首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   5篇
工业技术   13篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2011年   3篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  1951年   1篇
排序方式: 共有13条查询结果,搜索用时 750 毫秒
1.
Flemming Jappe Frandsen 《Fuel》2005,84(10):1277-1294
Through the years, Danish utilities have gained significant knowledge on how to minimize or even avoid ash deposition problems in utility boilers, firing a worldwide suite of high-volatile bituminous coals. In the early 1990s, the Danish Government decided on a 20% reduction in the CO2-emission before the year 2005, based on the 1988-level. Biomass is considered CO2-neutral due to its short time of regeneration, compared to fossil fuels. Thus, the Danish power producers are enjoined to burn 1.0 Mtonnes of straw, 0.2 Mtonnes of wood chips and 0.2 Mtonnes of straw/wood chips (free choice) every year beyond year 2005. As a consequence of this, the CHEC Research Centre, Department of Chemical Engineering, Technical University of Denmark, being partly funded by the Danish power utilities, has during the last decade, investigated ash and deposit formation, and corrosion, in utility boilers fired with coal, petcoke, orimulsion, and different types of biomass (straw (barley, rape and wheat), wood (beech, spruce, fibreboard, bark and waste wood), shea nuts, olive stones, etc.). A number of reviews of these full-scale measuring campaigns have been provided in the open literature. Recently, a project on the formation of ash and deposits in waste incinerators has been initiated.This paper summarizes our findings, including recent activities on: (1) deposit formation during coal-wheat straw co-firing in suspension-fired boilers; (2) a pilot-scale study of ash and deposit formation in the Sandia Multi-Fuel Combustor (MFC); (3) a full-scale measuring campaign dealing with the effect of co-firing of biomass on the ash and deposit formation; (4) a full-scale measuring campaign addressing low-temperature corrosion of tubes in the air pre-heater of a straw-fired utility boiler; (5) a lab-scale study of the corrosion of superheater materials in straw-fired utility boilers, and, finally; (6) a fundamental study on ash and deposit formation in municipal solid waste incinerators. The paper provides insight into the experience gained on ash, deposit and corrosion formation in thermal fuel conversion systems fired with solid non-fossil fuels, and focuses attention on how these results fit into our current understanding of this subject. A complete and updated list of references covering our research activities within this area during the last decade is provided. In addition, a brief overview of current and future research activities is provided.  相似文献   
2.
This is a very first preliminary investigation on the distribution of heterogeneous nature of mineral matter in one of the industrially important Assam (India) pulverized coal using computer-controlled scanning electron microscopy (CCSEM). The results show that clay minerals, quartz, pyrite, and pyrrhotite form the bulk of the mineral matter. Minor minerals, such as calcite, dolomite, ankerite, barite, oxidized pyrrhotite, and gypsum, are also observed in the sample. The particle size distribution (PSD) of the included minerals is generally observed to be finer than that of the excluded ones in the coal. As a consequence, the coal rich in included minerals has more small mineral particles, which may affect its reactivity. Regarding the association of individual mineral species, the proportion of included to excluded is found to be higher in major cases. With regard to the modes of occurrence of major inorganic elements, it is found that Si mostly occurs as quartz and clay minerals, while Al mostly occurs as silicate minerals. Fe is primarily present as iron sulfides, iron oxide, and Fe-Al-silicate. S is partitioned into iron sulfides and gypsum. Most Ca occurs as carbonates and gypsum, with a minor fraction associated with clay minerals. Mg is mainly present as dolomite and clay minerals, with a very minor fraction present as ankerite. The majority of alkali elements are associated with aluminosilicates. P is mostly associated with kaolinite and/or present as more complex compounds containing Al, Si, and other elements as apatite is found to be absent in the coal studied. Ti is mainly present as rutile and kaolinite.  相似文献   
3.
A knowledge of the composition and structure of minerals in coal is necessary in order to understand the mineral transformations and agglomerate or slag formation during combustion or gasification. Coal ash fusibility characteristics are difficult to determine precisely, partly because the ash contains many components with different chemical behaviours, and may vary from coal source to coal source.The first objective of this study was to determine if the most relevant characteristics of coal were representative of the typical coal from the South African Highveld region. Secondly, a detailed understanding of the coal and coal ash are needed in order to explain slag formation and mineral transformations.Based on standard coal properties, such as the ash content, volatile content, carbon content and maceral composition, it can be concluded that the coal sample used for this study was representative and comparable with the coal from the Highveld region.From the results obtained and the analysis done on the coal samples, it was observed that the mineral grains showed a wide range of types that ranged from pure coal to pure minerals. The types of mineral particles within the coal range from large irregular minerals to small irregular minerals on the edge of coal particles. Kaolinite and quartz can occur as fine inclusions in carbon rich particles or associated with mudstone, siltstone or sandstone, together with kaolinite infillings. The main minerals present in the coal feed are kaolinite, quartz, dolomite, calcite, muscovite, pyrite and microline. An abundance of calcium-rich particles, which are probably calcite and dolomite, were observed. These minerals are present throughout the coal structure and are not specific to one type of mineral grain or structure. An increase in Si and Al abundance in three different prepared coal fractions with increasing particle size distribution was observed the high density fractions are mainly situated in the coarser particles.After combustion or gasification, the major source of glass is derived from included minerals in carbon rich particles. It is clear that focus on the modification of the unclassified/amorphous phase, to increase viscosity (decrease slag formation or have a higher concentration of crystalline phases) at a certain temperature, or in general terms the ash fusion temperature of the coal, is important. Altering the ash chemistry involves the addition of a material to the coal to increase the viscosity.  相似文献   
4.
煤样不同密度组分中致渣矿物特性的CCSEM研究   总被引:1,自引:1,他引:0       下载免费PDF全文
将一种典型的易结渣烟煤分为低(<1.3 g·cm-3)、中(1.3~1.6 g·cm-3)、高(>1.6 g·cm-3)3个密度煤样。利用先进计算机控制扫描电镜(CCSEM)技术对原煤及分密度煤样中的致渣矿物进行了深入研究。结果表明,Na与K在煤中无机矿主要以硅铝酸盐的形式存在;粒径大于22 mm的外在(独立于炭基质)黄铁矿、磁黄铁矿主要分布在高密度煤中;未识别矿物(复杂硅铝酸盐)在高密度煤矿物中所占的比例最小,但其中Fe含量为20%~90%的颗粒所占比例最高;不同密度煤样中,内在(与炭基质结合)矿的硅铝比和碱酸比不同,低密度煤中内在矿的碱酸比最大,结渣倾向最严重,而中密度煤内在矿的碱酸比和硅铝比均小于原煤。  相似文献   
5.
准东煤燃烧中矿物质转化行为的CCSEM研究   总被引:4,自引:4,他引:0       下载免费PDF全文
在沉降炉中进行了准东煤的燃烧实验,利用计算机控制扫描电镜技术(computer controlled scanning electron microscopy,CCSEM)研究了煤中矿物质的转化行为。研究表明煤中主要矿物为方解石、高岭石、含铁类物质以及未分类矿物,燃烧后灰中石英、铁的氧化物、白云石的含量急剧增加,未分类矿物和方解石的含量下降。同时对3种重要致渣元素Na、Fe、Ca在燃烧前后的矿物转化行为及颗粒粒径分布进行了详细研究。  相似文献   
6.
In this study, a high-calcium coal, a high-silicon-aluminum Xinjiang coal and their blends were burnt in a drop tube furnace. The computer-controlled scanning electron microscope (CCSEM) was used to analyze the total ash mineral composition and particle size distribution after combustion. Based on CCSEM analysis, the composition data of single particle ash was obtained. The thermodynamic equilibrium method was used to calculate the liquid phase ratio of minerals in the ash, and the effect of coal blending on the melting characteristics of calcium-containing minerals in the ash was analyzed. The results show that the organically bound Ca easily interacts with other minerals in the coal. The mineral species of Ca-bearing minerals in the bulk ash mainly depend on the included minerals in coal. Co-firing will promote the conversion of calcium-containing aluminosilicate in the ash to calcium-containing complex aluminosilicate, and at the same time promote the melting of calcium-containing minerals. Under low temperature conditions, the particle size distribution of molten calcium-containing minerals in co-fired coal ash is affected by the particle size distribution of the alkali metal; however, under high temperature conditions, co-firing promotes the migration of molten calcium-containing minerals to large particle size ash.  相似文献   
7.
采用座逾渗模型,引入计算机控制扫描电镜(computer-controlled scanning electron microscope,CCSEM)矿物原粒径数据作模型初始矿物数据,考察了不同孔隙分布对煤焦转化与破碎的影响,煤焦转化过程对破碎程度的影响,以及煤焦破碎和内在矿聚合对飞灰颗粒物尤其是1~10 μm颗粒物最终分布的影响.模拟结果表明:煤焦初始孔隙率越大,表面反应而积和破碎次数均越大.当φ≥0.4时,煤焦破碎明显集中于转化率为0.4~0.7的阶段,且峰值有一定的向转化前期移动的趋势.初始孔隙率φ越大,颗粒破碎就越剧烈,内在矿聚合概率小,10 μm以内颗粒物的数目明显增大.随着φ值的增大,生成颗粒物的浓度尤其是1~10 μm颗粒物的浓度逐渐升高,最终颗粒物浓度分布到在3~5μm和6~8 μm存在2个峰值,这与实际燃烧生成的中间模态和粗模态颗粒物的峰值基本吻合.  相似文献   
8.
Combustion of a Chinese bituminous coal was carried out in a laboratory-scale drop tube furnace (DTF) to clarify the variation of ash properties with bulk gas composition. The combustion conditions tested include three bulk gases, air, 21% O2/79% CO2 and 27% O2/73% CO2, two furnace/gas temperatures close to the fluidized bed reactor temperature range, 1073 K and 1273 K, and three particle residence times. Apart from bulk properties analysis, individual ash particles and the original mineral species in coal were characterized using Computer - Controlled Scanning Electron Microscopy (CCSEM). The results indicate that, under the given experimental conditions, shifting bulk gas from air to O2/CO2 mixtures is insignificant in terms of the elemental composition of bulk ash, in agreement with the literature. However, changes in the properties of individual species/metals are noticeable, including the extent of the vaporization of volatile elements, ash particle-size distribution (PSD), crystallization extent of K alumino-silicate associate, pyrite decomposition and oxidation rate and formation propensity of liquidus in ash. These changes were mostly considered to be caused by the evolution of included mineral grains in the distinct char particles in the O2/CO2 environment. Reduction in char particle temperature with bulk gas shifting from air to O2/CO2 mixtures was primarily crucial, which, however, could be overweighed by the existence of a fairly strong local reducing condition on the char surface in O2/CO2. Consequently, vaporization of the volatile elements such as Na and P was promoted; formation of the crystalline leucite in air was in contrast inhibited. Furthermore, the extent of coalescence of included minerals and oxidation rate of pyrite (or its derivative, pyrrhotite) were also influenced by char consumption rate, i.e. the receding extent of char surface. These parameters exerted a combined effect on ash formation, requiring detailed mathematical modeling to describe the dynamics of the formation of oxy-fuel ash. This study also indicated that the differences of ash properties formed between air and O2/CO2 mixtures can be greatly reduced and eventually eliminated by increasing furnace temperature. Increase in the turbulence of gas flow should also benefit the elimination of the side effects of local reducing gases on char surface.  相似文献   
9.
The mineral features, ash composition, ash fusion temperature of Huainan coals were investigated by CCSEM, X-ray fluorescence (XRF) and JIS (Japan Industrial Standard) ash cone melting method respectively. The mineral matter is characterized by higher aluminosilicate clay minerals contents (more than 60% of the total mineral matter in coal) with quartz, which accounts for the higher ash flow temperatures, frequently higher than1 500℃. The contents of calcite and dolomite in Huainan coals range from 0.16% to about 11.57%. Another important non-silicate mineral matter, pyrite, ranges from 0.73% to 12.25%. Low amount of kaolinite-type clays and high amount of calcite and pyrite in the HN115 and XM coals are beneficial to ash melting. It is suggested that the high content of kaolinite in Huainan coals shows the high ash fusion temperature. CCSEM results also provide the size distribution of the minerals in Huainan coals. Generally, the mineral has bimodal size distribution in 6 Huainan coals.  相似文献   
10.
选用一种高钙和一种高硅铝新疆煤,在沉降炉中进行不同比例的混煤和单煤燃烧实验。采用计算机控制扫描电镜(CCSEM)分别对燃烧后总灰矿物成分和粒径分布进行分析。基于CCSEM分析获取单颗粒灰成分数据,采用热力学平衡方法对灰中矿物液相比例进行计算,分析混煤燃烧对灰中含钙矿物熔融特性影响。结果表明,煤中有机结合态Ca极易与煤中其他矿物元素发生交互反应,交互反应后含钙矿物种类取决于煤中内在矿种类。混煤燃烧会促进灰中含钙硅铝酸盐向含钙复杂硅铝酸盐转化,同时促进含钙矿物的熔融。在低温条件下,混烧煤灰中熔融含钙矿物粒径分布受碱金属粒径分布影响;但是高温条件下,混烧促进熔融含钙矿物向大粒径煤灰迁移。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号