首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2923篇
  免费   119篇
  国内免费   118篇
工业技术   3160篇
  2024年   4篇
  2023年   57篇
  2022年   44篇
  2021年   60篇
  2020年   58篇
  2019年   75篇
  2018年   32篇
  2017年   48篇
  2016年   47篇
  2015年   88篇
  2014年   200篇
  2013年   149篇
  2012年   253篇
  2011年   200篇
  2010年   201篇
  2009年   231篇
  2008年   312篇
  2007年   245篇
  2006年   230篇
  2005年   180篇
  2004年   140篇
  2003年   99篇
  2002年   48篇
  2001年   46篇
  2000年   27篇
  1999年   18篇
  1998年   21篇
  1997年   12篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1987年   1篇
排序方式: 共有3160条查询结果,搜索用时 15 毫秒
1.
文章主要采用PC机+运动控制卡的控制系统,利用PC机与运动控制卡的协同工作,实现对伺服电机的控制。在PC机上采用Labview语言建立良好的人机交互界面,通过调用运动控制卡的函数库,实现速度控制、圆弧插补、直线插补和G代码编程等基本功能,满足基本的数控教学应用。  相似文献   
2.
介绍了西门子SIMATIC S7-300 PLC、ET200S、WinCC V6.0、SIMATIC Easy Motion Control等产品在+锈钢线材处理系统中所组成的系统配置和网络结构,并从软件设计及硬件设计方面分别叙述了如何成功实现关键功能。  相似文献   
3.
4.
回顾无人驾驶车辆的运动控制问题。从系统模型、控制方法以及控制结构等角度切入,分别在纵向运动控制、路径跟踪控制和轨迹跟踪控制三个层面对国内外的研究进展进行综述,并提出对无人驾驶车辆运动控制技术的发展展望。当前运动控制研究多集中于常规工况,为实现无人驾驶车辆在处理人类驾驶员认为具有挑战性或缺乏操纵能力的复杂动态场景下的潜力,运动控制研究须从常规工况向极限工况拓展,但是极限工况下车辆的非线性和多维运动耦合特征显著增强,对系统建模以及算法的自适应性和鲁棒性的要求进一步提高。同时,为应对复杂场景下的多目标协调优化问题,考虑环境不确定性的运动规划与控制集成设计需要深入研究。增加执行器手段可以提升极限工况下车辆的侧向响应速度和控制裕度,但是冗余异构执行器的控制分配研究仍有待突破。运动控制的实现依赖于路面附着系数、质心侧偏角等信息输入,因此基于多源传感信息融合的关键状态与参数估计问题亟需解决。此外,将机器学习应用到车辆运动控制领域也是一个重要的发展方向。  相似文献   
5.
为了在执行任务期间精确记录数据和稳定的飞行,多旋翼机器人机构需要能够执行长期任务和携带较重的载荷。针对这一问题,对六旋翼机器人关键技术进行了深入的研究。首先,高性能六旋翼无人机的运行需要飞行控制系统,介绍了六旋翼控制系统和本体的设计方法。其次,构建了四旋翼和六旋翼无人机的数学模型,对比了六旋翼与四旋翼控制系统的优缺点。六旋翼飞行器的飞行控制由推力和力矩完成,在俯仰,偏航和横滚分别对螺旋桨的速度进行运动控制。再次,采用模糊自适应PID控制算法设计了一款跟踪控制系统,用一个PID测试控制器进行仿真。并在真实飞行中成功地测试六旋翼机器人,达到了一个理想的效果。而不是使用分析差异,避免跟踪控制器设计过程中的"差异扩展"。最后,仿真结果证明了所提技术的有效性和有效性。  相似文献   
6.
对大型玻璃纤维风电叶片根部切割打孔设备控制系统进行技术方案设计研究,以西门子可编程控制器SIMATIC S7-226CN为核心,采用人机界面、伺服运动控制、变频器调速、MODBUS通信控制技术,实现大型玻璃纤维风电叶片根部切割、打孔。阐述了设备主体结构功能及风电叶片根部加工工艺流程,提出控制系统设计方案,并着重描述控制要求和操作功能,给出了硬件电路和软件程序设计。实际应用表明,该设备性能稳定,切割、打孔精度均满足设计要求,并具有良好的可扩展性。  相似文献   
7.
以实现空间3自由度的Delta机器人运动控制为研究目的,基于IEC61131-3国际标准,在CODESYS开发平台上设计了Delta机器人运动控制模块,包括点到点插补运动、直线插补运动、圆弧插补运动等,并通过模块之间的组合实现Delta机器人的连续运动。为了操作方便,开发出相对应的运动控制指令,在可输入界面进行指令编程即可,克服了传统控制卡控制复杂、拓展性差的缺点。采用3-4-5多项式轨迹规划出的门型路径,在Delta机器人上机实验,结果表明机器人能稳定运行并且各方向加速度与理论加速度一致,证明了机器人运动控制设计成功。  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号