首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   1篇
自然科学   37篇
  2019年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1988年   2篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
聚醚型脂肪族聚氨酯预聚体的制备   总被引:3,自引:0,他引:3  
以HDI为异氰酸酯组分,制备聚醚型脂肪族聚氨酯预聚体。对聚醚脱水条件,反应温度和时间,以及预聚体的一些性能进行了探索。  相似文献   
2.
研制了几种合成聚氨酯胶粘剂的固化剂,探讨了固化剂在提高聚氨酯胶粘剂初粘强度方面的应用,以及最佳胶液配方和粘接条件。  相似文献   
3.
采用流延成膜的方法制备了聚乙烯醇(PVA)/聚氨酯(PU)共混薄膜.当PU摩尔分数小于10%时,可得均一连续的共混膜.通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、示差扫描量热仪(DSC)、拉伸测试及表面接触角测试等手段对PVA/PU共混膜的形貌及性能进行了研究.实验结果表明,PU可以与PVA形成分子间氢键,破坏了PVA分子内及分子间氢键,进而改善PVA薄膜的性能.  相似文献   
4.
黎剑峰  魏霞  刘国习  陈勤 《江西科学》2001,19(2):114-116
介绍了以丙烯酸多元醇树脂为预聚体骨架,与甲苯二异氰酸酯(TDI)合成新型聚氨酯固化剂的配方及工艺;与传统TDI-TMP加成物固化剂作性能对比;探讨了影响合成产物的各种条件因素。  相似文献   
5.
高承载聚氨酯软泡的试制   总被引:1,自引:0,他引:1  
利用聚合物聚醚多元醇与普通聚醚多元醇混合发泡的方法,对普通聚氨酯软泡进行改性,试制高承载聚氨酯软泡,大幅度提高了泡沫体的硬度和回弹性。其中,给出了常用密度下的高承载聚氨酯软泡生产配方,并在实际应用中得到验证。  相似文献   
6.
本文采用预聚-扩链-中和-分散溶解法,一步合成出聚氨酯(PU)水溶液,再用凝聚相分离法合成出Pu微胶囊。由傅立叶变换红外光谱(FT—IR)研究了PU微胶囊的化学结构;使用差示扫描量热仪(DSC),对PU微胶囊的玻璃化转变及微相分离结构进行了研究;通过扫描电子显微镜(SEM)的观测,对PU微胶囊的表面及剖面形态进行了研究,并测定出PU微胶囊直径约2.5mm,内腔直径50~600μm,膜孔直径为20~120nm;研究了PU微胶囊在磷酸缓冲液(PBS)中的降解行为,发现本实验合成的PU微胶囊基本上是不降解的。这种PU微胶囊有利于转基因CHO细胞的包覆,有利于临床应用中进行腹腔植入。  相似文献   
7.
研究了预聚体的用量对酚醛泡沫塑料的表观密度、抗冲击强度、压缩强度、吸水率和阻燃性等性能的影响,用SEM观察了酚醛泡沫塑料泡体的微观形貌。结果表明:当预聚体的加入量为8%时,酚醛泡沫塑料的表面密度由0.693g/cm^3下降为0.598g/cm^3;冲击强度和压缩强度分别提高了50%和96.5%;吸水率由2.08%降低到了1.38%;阻燃性有所下降。  相似文献   
8.
介绍了当前合成革市场极其紧俏的服装革用超低模量湿法压花树脂的合成,分析了在树脂的合成过程中多元醇、扩链剂、助剂以及反应工艺等各种因素对产品的影响.  相似文献   
9.
PU/PGMA同步互穿网络的力学性能   总被引:4,自引:0,他引:4  
研究影响高增塑聚氨酯/聚甲基丙烯酸缩水甘油酯同步互穿网络力学性能的因素,寻求最佳力学性能配方。方法,制备了不同配方的样品,对其进行拉伸试验以及动态力学分析。结果与结论改变PU与PGMA的组成比,SIN的拉伸强度和延伸率呈非单调变化,在PU含为60%附近时出现极大值,在体系中引入PGMA组分的交联剂及引入网间接枝剂均使体系的交联密度上升,导致抗张强度升高,断裂伸长率下降。  相似文献   
10.
采用十二烷基三甲氧基硅烷(DTMS)对氧化锌颗粒表面进行处理,得到改性氧化锌颗粒,将改性氧化锌颗粒涂覆在聚氨酯泡沫表面,制备得到泡沫吸油材料.采用傅立叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)和扫描电镜(SEM)对泡沫吸油材料的表面进行表征,利用接触角测试仪(CA)对其表面性能进行分析,并对其吸油性能和重复利用率进行了研究.结果表明:(1)该泡沫的表面水接触角为153°,具有超疏水特性;(2)该泡沫可以吸收多种油,最高吸油倍率为9.55g/g,吸水倍率为0.58g/g,重复利用率高.此种泡沫是一种综合性能优良的吸油材料.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号