首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   359篇
  收费全文   254篇
  完全免费   111篇
环境安全   724篇
  2018年   12篇
  2017年   25篇
  2016年   28篇
  2015年   32篇
  2014年   53篇
  2013年   35篇
  2012年   66篇
  2011年   70篇
  2010年   62篇
  2009年   62篇
  2008年   50篇
  2007年   46篇
  2006年   30篇
  2005年   21篇
  2004年   18篇
  2003年   7篇
  2002年   6篇
  2001年   12篇
  2000年   7篇
  1998年   1篇
  1997年   11篇
  1996年   13篇
  1995年   10篇
  1994年   11篇
  1993年   8篇
  1992年   4篇
  1991年   11篇
  1990年   3篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有724条查询结果,搜索用时 31 毫秒
1.
广州市大气中多环芳烃分布特征、季节变化及其影响因素   总被引:14,自引:14,他引:20  
李军  张干  祁士华 《环境科学》2004,25(3):7-13
对广州市大气中气态和颗粒态多环芳烃(PAHs)进行了连续一年的采样观测.结果表明,气态和颗粒态样品中PAHs的平均浓度值分别为312.9 ng/m3 和 23.7 ng/m3,即多环芳烃主要存在于气相中,占大气总PAHs年平均的92.5%,且在夏季的比重要高于冬季.所检出的的气态多环芳烃以芴、菲、蒽等低环数化合物为主,其中菲占了总含量的60%以上;颗粒态多环芳烃则以高环数的化合物为主,各化合物所占的比重相当,其相对浓度无显著差别.气态多环芳烃在夏季达到高值,冬季降为低值;而颗粒态与其相反,夏季低值,冬季达到高值.在所测定的气象条件中,温度在影响气态多环芳烃浓度变化的因素中占了绝对优势,其次为风速,其它气象因素未观测到有较明显的影响作用;对颗粒态多环芳烃来说,则无绝对的影响因素,温度、风速和湿度同为重要影响因素,但随着分子量的增加,各因素的影响大小顺序略有不同.  相似文献
2.
珠江及南海北部海域表层沉积物中多环芳烃分布及来源   总被引:13,自引:13,他引:28  
珠江三角洲河流、河口及南海北部近海区域多环芳烃(PAHs)分析表明,PAHs总量分布范围在255.9~16670.3ng/g,整体污染水平处于中偏低下水平.分布特征为珠三角河流>伶仃洋>南海;珠江广州段是高污染区;沿南海近海海域4条剖面,随离岸距离增加,浓度下降.西江、伶仃洋及珠江部分站点石油污染比重大,南海近海则受燃烧来源比重大.PAHs来源诊断指标表明,珠江三角河流及伶仃洋更多受石化燃料燃烧的影响,南海近海区则主要受木柴、煤燃烧的影响.与1997年样品的对比表明,多环芳烃污染程度无明显下降,但区域内PAHs来源从以煤燃烧为主转变为以油燃烧为主,这种近期能源结构的转变在沉积速率较快的珠三角河流及伶仃洋表层沉积物中得到反映.  相似文献
3.
广西大石围天坑群地下河水中多环芳烃的污染特征   总被引:13,自引:9,他引:4       下载免费PDF全文
为了确定典型喀斯特区广西大石围天坑群地下河多环芳烃的组成、来源及污染特征,沿途采集了8个断面的表层水样品,利用GC-MS仪测试了16种优控多环芳烃(PAHs).结果表明, 地下河水中PAHs(总量PAHs)浓度为54.7~192.0 ng/L,平均值为102.3 ng/L, PAHs组成以2~3环为主,占65.1%. 地下河沿程水中的PAHs浓度变化表明,上游高于下游,是因为城镇污水的排放,同时地下河对4~6环PAHs具有吸附作用;大石围天坑断面的PAHs浓度显著增高93.8%,是由于地下河系统中环境介质的释放和大气传输;大石围支流汇合处的PAHs浓度被稀释降低了47.3%;百朗出口断面的PAHs浓度分别高于进口和大石围断面128.3%和17.8%. PAHs来源分析表明,城镇和大石围天坑区域显示以石油类及其燃烧源为主.然而,城镇的石油类源主要是人为输入,大石围天坑的则主要是天然输入;其余乡村地区显示以草木、煤燃烧源为主.与其他地区比较,大石围天坑群地下河水中PAHs污染处于较低的水平,但苯并[a]芘浓度6个断面超过国家地表水环境质量标准.  相似文献
4.
参照美国EPA8000系列方法及质量保证和质量控制,对江三角洲河流和珠江口的表层沉积物中多环芳烃和有机氯农药进行了分析。结果表明,珠江广州河段及澳门内港的PAHs和有机氯农药含量最高;进入狮子洋水道后,污染物的含量显著减少;珠江口西岩污染物的含量高于东岸;西江表层沉积物中优控制PAHs的含量相对较高。对多环芳烃的来源也作了初步探讨。  相似文献
5.
广州灰霾期间颗粒态PAHs的污染特征及来源   总被引:12,自引:12,他引:4  
采集广州五山和荔湾(2002-03-12~2003-06-31)PM10样品,并对冬、夏两季灰霾和非灰霾期间大气颗粒物中的PAHs进行分析. 广州市灰霾期间PAHs污染程度严重,特别是冬季灰霾期. 广州市夏季灰霾期间菲、蒽、荧蒽、芘、苯并[a]蒽、、茚并[1,2,3-cd]芘、二苯并[ah]蒽和苯并[ghi]比非灰霾期间相对浓度高,而冬季灰霾期间苯并[a]荧蒽、苯并[e]芘、苯并[a]芘、、茚并[1,2,3-cd]芘、二苯并[ah]蒽和苯并[ghi]比非灰霾期间的相对浓度高. 夏季非灰霾、夏季灰霾、冬季非灰霾和冬季灰霾期间的BEQ值分别为3.5、 3.35、 1.43和13.0 ng·m-3,与国内外各大城市相比,广州市夏季非灰霾、冬季非灰霾和夏季灰霾期间的BEQ值(平均值为2.76 ng·m-3)在国内处于较低水平,与国外城市基本相当. 冬季灰霾期间的BEQ值在国内城市中处于较高水平,说明广州冬季灰霾对人体健康的威胁比较严重. 此外,诊断参数法研究还表明夏季PAHs主要为汽油车和柴油车的混合排放,冬季PAHs的主要来源于柴油车排放和燃煤;冬季非灰霾期间PAHs一部分来自于本地排放,另一部分可能来自北方的长距离传输.  相似文献
6.
表层岩溶泉水中多环芳烃污染特征及来源解析   总被引:12,自引:8,他引:4       下载免费PDF全文
孙玉川  沈立成  袁道先 《环境科学》2014,35(6):2091-2098
对重庆市南川区4个典型表层岩溶泉进行连续采样观测,利用GC-MS定量分析泉水中16种优控多环芳烃(PAHs)含量,研究了表层岩溶泉水中多环芳烃含量、组成、来源的季节变化以及污染特征.结果表明,4个表层岩溶泉中16种PAHs均有检出.在一年的观测期间,泉水中的ΣPAHs含量变化较大,范围在341~4968 ng·L-1之间,平均值为1772 ng·L-1.7种致癌性PAHs的含量均表现为雨季大于旱季.泉水中PAHs组成以2~3环PAHs为主,其比例均超过了50%.泉水中的PAHs主要来自于煤、生物质以及石油的燃烧,但在2011年6~10月期间,来源于煤、生物质燃烧的PAHs对泉水中PAHs的贡献要更大一些.Ant/(Ant+Phe)和Fla/(Fla+Pyr)比值随季节变化的特点,表明Ant、Phe、Fla和Pyr在表层岩溶带土壤中易于迁移、传输.4个同分异构体比值中,Fla/(Fla+Pyr)比值对源信息的指示更灵敏.与其它地区相比,研究区表层岩溶泉水中的PAHs含量处于较高水平,泉水已受到多环芳烃的污染.  相似文献
7.
利用PUF大气被动采样技术监测中国城市大气中的多环芳烃   总被引:11,自引:11,他引:0  
利用PUF大气被动采样技术,分冬、春2个季度,对中国32个城市大气中的多环芳烃(PAHs)进行了观测.结果表明,除主要存在于气相中的2~3环PAHs与部分4环PAHs外,PUF被动采样器也可一定程度地采集大气颗粒物中的5~7环PAHs.中国城市大气PAHs的浓度与组成,主要受城市所处的地理位置、气候条件以及能源消费结构的影响.西北、华北、西南和华中地区部分城市大气中PAH总量和高环PAH浓度均较高,华南和东南沿海一带城市则相对较低.在季节变化上,表现为冬季浓度高、春季低.可能是陆源有机质在土壤中早期成岩作用的产物,春季浓度升高反映了土壤颗粒物对大气颗粒物的贡献,与扬尘天气相对应;而芴的浓度在燃煤较多的城市大气中显著增加,与其主要属燃煤成因相一致.研究表明,PUF大气被动器可很好地运用于区域大气PAH污染分布与特征对比研究.  相似文献
8.
利用气相色谱-质谱联用仪(GC/MS)测定了老龙洞地下河流域水中16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,研究了流域内PAHs组成、污染水平,并对其进行了生态风险评价.结果表明,老龙洞地下河水中ΣPAHs含量变化范围为81.5~8 019 ng·L-1,表层岩溶泉ΣPAHs含量为288.7~15200 ng·L-1,地表水ΣPAHs含量为128.4~2 442 ng·L-1;受黄桷垭镇污水的影响,地下河水相对于地下水补给来源的落水洞和地表水含量较高.流域内水中PAHs均以低环为主,尤其是3环占主导.受污水、季节的影响及PAHs物理化学性质的差异,水中PAHs月变化呈现不同的变化特征.地表水、落水洞污水排放对地下河PAHs来源起重要作用.流域内水中PAHs以低环污染为特征,所有检测到的PAH化合物处于中等污染和重污染风险.  相似文献
9.
谢婷  张淑娟  杨瑞强 《环境科学》2014,35(7):2680-2690
2007年8月采集了青藏高原中部与北部6个典型湖泊流域的土壤与牧草样品,分析了样品中多环芳烃和有机氯农药(包括六六六和滴滴涕)的污染水平.土壤样品中Σ16PAHs、ΣHCHs和ΣDDTs的浓度范围分别为60.6~614 ng·g-1(平均194 ng·g-1)、0.06~0.74 ng·g-1(平均0.31 ng·g-1)和N.D.~0.17 ng·g-1(平均0.07 ng·g-1).牧草样品中Σ15PAHs(不包括萘)、ΣHCHs和ΣDDTs的浓度分别为262~519 ng·g-1(平均327 ng·g-1),0.55~3.92 ng·g-1(平均2.17ng·g-1)和0.20~2.19 ng·g-1(平均0.92 ng·g-1),均远低于欧洲高山中相应介质中POPs的浓度.牧草的生物浓缩效应显著,其生物浓缩因子达到4.2~19.3.POPs的浓度分布与有机质/脂肪含量、海拔均无显著相关关系.PAHs的组成以较轻组分(2、3环PAHs)为主,占总浓度的80%以上.PAHs的特征单体比值表明生物质和化石燃料的低温燃烧是青藏高原PAHs的主要来源,同时较低的α/γ-HCH比率和较高的o,p’-DDT/p,p’-DDT比率表明,林丹以及三氯杀螨醇的使用对高原介质中有机氯农药的污染有一定的贡献.根据反向气团轨迹模型,推断冬季青藏高原中部与北部的污染主要受西风带影响,夏季高原中部位点的污染物主要源自印度次大陆,而北部位点还受到中国内陆省份的影响.  相似文献
10.
李海燕  段丹丹  黄文  冉勇 《环境科学学报》2014,34(12):2963-2972
分别于2011年4月(春季)和2011年9月(夏季)采集珠江广州河段及东江东莞河段表层水体样品,对该区域表层水体中优控多环芳烃(PAHs)的时空分布、固液分配及其来源进行了分析和讨论.结果表明,珠江广州河段及东江东莞河段表层水体中多环芳烃浓度春季高于夏季.藻类有机碳是该水环境有机碳的主要成分.溶解有机碳(DOC)、颗粒态有机碳(POC)以及叶绿素a(Chl a)含量是控制水体PAHs浓度的主要因素,说明水环境的富营养化程度可以通过增长的浮游生物量来影响多环芳烃的生物地球化学过程,继而影响其环境行为和归宿.多环芳烃在水/颗粒物间的有机碳归一化分配系数(log Koc)与辛醇/水分配系数(log Kow)间存在明显的线性关系,其斜率是夏季大于春季,可能与多环芳烃的非平衡吸附有关.多环芳烃同系物比值法和主成分分析(PCA)的结果表明,研究区域水体中PAHs主要来源于石化燃料、煤和生物质的混合燃烧,并且PAHs的来源未体现出明显的季节变化.通过本研究我们能够比较全面的了解该流域多环芳烃的时空分布状况,固液分配及其可能的来源,并且为珠江广州河段及东江东莞河段多环芳烃污染的控制和生态风险评价提供科学依据.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号