首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   6篇
  国内免费   8篇
生物科学   147篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   7篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
排序方式: 共有147条查询结果,搜索用时 26 毫秒
1.
Stomata are microscopic openings in leaves of green plants which permit gas exchange. This paper presents a parameter study of a model of a stomatal oscillator first derived by Delwiche and Cooke in 1977. We prove the existence of an unstable limit cycle by using the theory of the Hopf bifurcation. Other bifurcations exhibited by the model are also discussed.  相似文献   
2.
We examine conductances for evaporation from both vegetation and soil in response to environmental variables. Data from a vertically-structured pristine forest of Nothofagus are presented as an example of the effects of biodiversity on the scaling of conductances between tiers of plant organisation. Available data sets of maximum leaf stomatal conductances (g lmax ) and bulk vegetation surface conductances (G smax ) are compared. Overall, the ratio G smax /g lmax is consistently close to 3 for seven major vegetation types of diverse structure. An analytical model accounts for this close relationship, and in particular how G smax is conservative against changes in leaf area index because of the compensating decrease in plant canopy transpiration and increase in soil evaporation as leaf area index diminishes. The model is also successfully tested by comparison with canopy conductances of emergent trees measured in the Nothofagus forest. The constraint of vegetation surface conductance and evaporation via environmental regulation by irradiance, air saturation deficit and root zone water supply are discussed.  相似文献   
3.
4.
利用光学显微镜对5种安徽野生菊属(Chrysanthemum)植物(野菊、甘菊、菊花脑、毛华菊和紫花野菊)的叶下表面特征进行研究,并探索与植物分布、生态的相关性.结果显示,这些类群非腺毛、腺毛的形态、大小和密度均有差异;气孔的大小和密度、表皮细胞的大小和角质纹理等方面也存在差异.叶片表面的特征与植物生长环境有相关性.依据这些特征讨论了菊花脑的分类并尝试性地编制了这些类群的检索表.  相似文献   
5.
Foliar micromorphology of Solanum pseudocapsicum was investigated by electron microscopical examination. The leaves are characterized by anisocytic stomata which are more abundant on the abaxial surfaces. The leaves have short multicellular glandular trichomes sparsely distributed over the entire leaf surfaces. Crystal deposits were also observed on the surfaces above the stomata. Energy dispersive X-ray spectroscopy-SEM showed that Al, K, Na and Si were the major constituents of the crystals analyzed. The presence of glandular trichomes in this plant could be the source of poisonous compounds that are characteristic of this species.  相似文献   
6.
Plants are confronting a variety of environmental hazards as a result of fast climate change, which has a detrimental influence on soil, plant growth, and nutrient status. As a result, the present study aims to evaluate the influence of various fly ash concentrations (5, 10, 15, 20, 25, 30, and 35% FA) mixed with the optimum concentrations of nitrogen in the form of urea (0.5 g pot?1) on the growth, productivity and biochemical constituents of radish plants. Energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) were used to assess soil physical–chemical properties and FA nutrient status. Results suggested that FA added many essential plant nutrients to the growth substrate and improved some important soil characteristics such as pH, electric conductivity, porosity, and water holding capacity. Also, the results revealed that the low concentrations of FA up to 20% were found to boost radish growth, yield, chlorophyll, carotenoids, and mineral content. While the highest concentrations of FA (25–35%) decreased radish growth and yield, increased oxidative stress through increased lipid peroxidation (MDA) and caused a significant boost in ascorbic acid, proline, protein, and antioxidant enzyme activities. Furthermore, SEM of radish leaf revealed an enhancement in the stomatal pore of radish leaf under different levels of FA. In conclusion, combining 15% fly ash with 0.5 g nitrogen in the form of urea significantly enhanced radish yield by enhancing antioxidant activity such as catalase, peroxidase, ascorbate peroxidase, Guaiacol peroxidase, superoxide dismutase, nitrate reductase and reducing oxidative stress, potentially reducing fly ash accumulation and environmental pollution.  相似文献   
7.
Transpiration, xylem water potential and water channel activity were studied in developing stolons and leaves of strawberry (Fragaria × ananassa Duch.) subjected to drought or flooding, together with morphological studies of their stomata and other surface structures. Stolons had 0.12 stomata mm–2 and a transpiration rate of 0.6 mmol H2O m–2 s–1, while the leaves had 300 stomata mm–2 and a transpiration rate of 5.6 mmol H2O m–2 s–1. Midday water potentials of stolons were always less negative than in leaves enabling nutrient ion and water transport via or to the strawberry stolons. Drought stress, but not flooding, decreased stolon and leaf water potential from –0.7 to –1 MPa and from –1 to –2 MPa, respectively, with a concomitant reduction in stomatal conductance from 75 to 30 mmol H2O m–2 s–1. However, leaf water potentials remained unchanged after flooding. Similarly, membrane vesicles derived from stolons of flooded strawberry plants showed no change in water channel activity. In these stolons, turgor may be preserved by maintaining root pressure, an electrochemical and ion gradient and xylem differentiation, assuming water channels remain open. By contrast, water channel activity was reduced in stolons of drought stressed strawberry plants. In every case, the effect of flooding on water relations of strawberry stolons and leaves was less pronounced than that of drought which cannot be explained by increased ABA. Stomatal closure under drought could be attributed to increased delivery of ABA from roots to the leaves. However, stomata closed more rapidly in leaves of flooded strawberry despite ABA delivery from the roots in the xylem to the leaves being strongly depressed. This stomatal closure under flooding may be due to release of stress ethylene. In the relative absence of stomata from the stolons, cellular (apoplastic) water transport in strawberry stolons was primarily driven by water channel activity with a gradient from the tip of the stolon to the base, concomitant with xylem differentiation and decreased water transport potential from the stolon tip to its base. Reduced water potential in the stolons under drought are discussed with respect to reduced putative water channel activity.  相似文献   
8.
The dicarboxylic acid malate has long been thought to play important roles in plant physiology. In addition to being a major photosynthate in C4 and CAM plants and an intermediate of the tricarboxylic acid cycle it has been proposed to play essential roles in pH regulation and important roles in pathogen response, as a component of the root exudates and as a regulatory osmolyte affecting stomatal function. Recent years have seen the cloning and functional analysis of a wide range of enzymes and transporters associated with malate metabolism. Here we attempt to provide a synthesis of research in this field as well as re-evaluating the role of this metabolite in mediating guard cell function.  相似文献   
9.
The diet of the mangrove crab, Aratus pisonii, was assessed by determining the percent of damaged leaves at selected mangrove communities and by examining herbivore gut contents. This study compared the utility of both methods and tested if comparable levels of damage and dietary preference occurred using the methods. Percent of damaged leaves was determined for the three species of mangroves within Tampa Bay, FL, USA, including: the red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa, respectively) in four 5×10-m quadrats during summer 2001. For each species, in each of the quadrats, 200 leaves per tree were assessed for the presence or absence of crab damage. A. pisonii were sampled from the same quadrats from which leaf damage data were collected. Stomach contents were dissected and food items were classified into a number of categories.Species damaged and preferred were determined by comparing relative numbers of mangrove leaf stomata from the three mangrove species in gut contents. Results suggested that both methods provide similar estimates of preference. R. mangle leaves were preferred over those of A. germinans and L. racemosa. The percent of R. mangle leaves with damage was about 20-30 times greater than the other species, and R. mangle leaf stomata were 3 to 20 times more abundant in crab guts compared to leaf stomata of the other species. Gut contents indicated that A. pisonii is omnivorous, that average-sized adult crabs (1.4-1.7-cm width) prefer R. mangle, and that the diet of males is more varied than of females. While use of both percent leaf damage and crab gut contents reliably indicates preference, gut contents may describe better the actual diet and elucidate trends for different size or sex classes within a population.  相似文献   
10.
微丝骨架存在于多种植物的保卫细胞中,周质微丝骨架的排列和结构是动态的。越来越多的证据表明保卫细胞中的微丝骨架可作为信号调节物,对气孔的启闭运动起着重要的调控作用。本文综述了保卫细胞微丝骨架的标记方法、结构,以及其在气孔运动中的功能和作用机制的最新研究进展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号