首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   1篇
地球科学   40篇
  2024年   1篇
  2021年   2篇
  2018年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2001年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1980年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
2.
Climatic change and human activities of northeastern sahara in Holocene   总被引:1,自引:0,他引:1  
GeologicalrecordsrevealedthattheHoloceneenvironmentshadexperienceddrasticchanges,whichwascloselyrelatedtohumanevolutionandfin...  相似文献   
3.
The Adrar Souttouf belt (Western Sahara) lies in the northern part of the Mauritanide belt and was considered as a part of the Hercynian Mauritanian-Appalachian belt. Recently the presence of a Panafrican protolith (595 Ma) was evidenced by the age of inherited zircons from an eclogitic unit and led to consider complex Panafrican events included in the Hercynian belt, as in the central and southern Mauritanide belt. Our new field survey completed by ten KAr dating (whole rocks and separate minerals) confirmed that multiphased Panafrican formations outcrop within the center of the Adrar Souttouf massif. Diverse events ranged from ca. 1000 to 500 Ma, some of them being indicative of an oceanic type environment and metamorphism. The 1000 Ma metamorphic event is recorded for the first time in the West African craton. A large Hercynian remobilisation is also evidenced. To cite this article: M. Villeneuve et al., C. R. Geoscience 338 (2006).  相似文献   
4.
The Fazzan Basin of south-west Libya is at present arid with less than 20 mm of rainfall per annum. However, regionally extensive limestones, lacustrine sands and coquina (fossiliferous carbonate rock) deposits show that the Fazzan Basin previously contained a large palaeolake, indicating that the climate in the past was more humid. Optically stimulated luminescence (OSL) dating techniques have been applied to key lacustrine deposits within the basin in an attempt to provide an internally consistent chronology for this humidity record. Results indicate that palaeolake sediments within the Fazzan Basin record a very long history of palaeohydrological change, ranging from present day arid conditions to humidity capable of sustaining a lake with an approximate area of 76,250 km2. The existence of humid periods in mid oxygen isotope stage 5 and the early Holocene is confirmed. An older lacustrine event, tentatively correlated to oxygen isotope stage 11, is also recognized. In addition, evidence is presented for at least two humid phases beyond the age range over which the conventional OSL dating technique is applicable. This study demonstrates that OSL dating of palaeolake sediments within the Fazzan Basin offers the potential to provide a detailed record of North African humidity spanning several glacial–interglacial cycles.  相似文献   
5.
Desert winds aerosolize several billion tons of soil-derived dust each year, including concentrated seasonal pulses from Africa and Asia. Huge dust events create an atmospheric bridge over continents and oceans, and eject a large pulse of soil-associated microorganisms into the atmosphere. These dust events might therefore have a role in expanding the biogeographical range of some microorganisms by facilitating rare long-distance dispersal events. The goal of this study is to characterize the microbes associated with African dust events and determine if they pose a risk to humans or downwind ecosystems. Air samples were collected by vacuum filtration in a source region (Mali, West Africa) during dust events and plated on R2A media to culture microorganisms. These organisms were compared to those in similar samples collected in the Caribbean during Saharan/Sahelian dust events. A high-volume liquid impinger is currently being tested in Barbados, collecting aerosol samples during African dust events. Over 100 bacteria and fungi (19 genera of bacteria and three genera of fungi) have been characterized from source region dust events.  相似文献   
6.
In the Saoura, the brachiopod shell beds, so-called niveau coralligène, correspond to a major shell deposit dated to the Late Emsian. Brachiopods and crinoids dominate the benthic assemblage that contains also corals, bryozoans, trilobites, goniatites, and orthocones. This major level has a large geographic distribution and it is characterized by a wide brachiopod diversity due to time-averaging, taphonomic feedback and alternate bottom conditions changing from soft to shelly and firm. This kind of brachiopod association is linked to a transgressive onlap system. At regional extent, we can correlate this major shell bed to similar shell deposits from the Ahnet-Mouydir, Tindouf, and Zemmour areas. It indicates an important transgressive event underlined by change in the sedimentation from detritic deposits to carbonate sediments. To cite this article: A. Ouali Mehadji et al., C. R. Geoscience 336 (2004).  相似文献   
7.
Wet climatic episodes are known to have prevailed in the Egyptian Sahara several times during the late Quaternary, most recently during the Holocene 8000 yr ago. Earlier wet episodes have been recognized as having occurred during the past 300,000 yr and have been dated by U-series methods in speleothems and in lake travertines. We show here that the times of enhanced groundwater movement can also be determined by 230Th/234U dating of secondary U in ores of uranium, iron, and phosphate. We also present evidence that such acceleration of groundwater movements is indicated by relatively low 234U/238U activity ratios in the secondary uranium. Our new data show that pluvial periods in Egypt occurred during marine oxygen isotope stages 4, 5, 6, and 7 and therefore are consistent with the view that the wet episodes are the results of migration of the tropical monsoonal belt driven primarily by the 23,000-yr precession cycle of the Milankovich curve, modulated by the 100,000-yr eccentricity cycle.  相似文献   
8.
《International Geology Review》2012,54(14):1576-1592
Topographic uplifts in the central Sahara occur in the Hoggar-Aïr and Tibesti-Gharyan swells that consist of Precambrian rocks overlain by Cenozoic volcanic rocks. The swells and associated Cenozoic volcanism have been related either to mantle plumes or to asthenospheric upwelling and to partial melting due to rift-related delamination along pre-existing Pan-African mega-shears during the collision between Africa and Europe. The Cenozoic volcanic rocks in the Hoggar generally range from Oligocene tholeiitic/transitional plateau basalts, which occur in the centre of the dome, to Neogene alkali basalts characterized by a decrease in their degree of silica undersaturation and an increase in their La/Yb ratios. The alkali basaltic rocks occur mainly along the margins of the dome and typically have less radiogenic Nd and Sr isotopic ratios than the tholeiitic/transitional basalts. The geochemistry of the most primitive basaltic rocks resembles oceanic island basalt (OIB) tholeiitic – in particular high-U/Pb mantle (HIMU)-type – and is also similar to those of the Circum-Mediterranean Anorogenic Cenozoic Igneous (CiMACI) province. These characteristics are consistent with, but do not require, a mantle plume origin. Geophysical data suggest a combination of the two mechanisms resulting in a complex plumbing system consisting of (a) at depths of 250–200 km, an upper mantle plume (presently under the Aïr massif); (b) between 200 and 150 km, approximately 700 km northeastward deflection of plume-derived magma by drag at the base of the African Plate and by mantle convection; (c) at approximately 150 km, the magma continues upwards to the surface in the Tibesti swell; (d) at approximately 100 km depth, part of the magma is diverted into a low S-wave velocity corridor under the Sahara Basin; and (e) at approximately 80 km depth, the corridor is tapped by Cenozoic volcanism in the Hoggar and Aïr massifs that flowed southwards along reactivated Precambrian faults.  相似文献   
9.
The role of faults in controlling groundwater flow in the Sahara and most of the hyper-arid deserts is poorly understood due to scarcity of hydrological data. The Wadi Araba Basin (WAB), in the Eastern Sahara, is highly affected by folds and faults associated with Senonian tectonics and Paleogene rifting. Using the WAB as a test site, satellite imagery, aeromagnetic maps, field observations, isotopic and geochemical data were examined to unravel the structural control on groundwater flow dynamics in the Sahara. Analysis of satellite imagery indicated that springs occur along structurally controlled scarps. Isotopic data suggested that cold springs in the WAB showed a striking similarity with the Sinai Nubian aquifer system (NAS) water and the thermal springs along the Gulf of Suez (e.g., δ18O = −8.01‰ to −5.24‰ and δD = −53.09‰ to −31.12‰) demonstrating similar recharge sources. The findings advocated that cold springs in the WAB represent a natural discharge from a previously undefined aquifer in the Eastern Desert of Egypt rather than infiltrated precipitation over the plateaus surrounding the WAB or through hydrologic windows from deep crystalline basement flow. A complex role of the geological structures was inferred including: (1) channelling of the groundwater flow along low-angle faults, (2) compartmentalization of the groundwater flow upslope from high-angle faults, and (3) reduction of the depth to the main aquifer in a breached anticline setting, which resulted in cold spring discharge temperatures (13–22°C). Our findings emphasize on the complex role of faults and folds in controlling groundwater flow, which should be taken into consideration in future examination of aquifer response to climate variability in the Sahara and similar deserts worldwide.  相似文献   
10.
The northwest African margin has been affected by numerous large-scale landslides during the late Quaternary. This study focuses on a recent collapse of the Sahara Slide headwall and characterises the resulting flow deposit. Core and seismic data from the base of the upper headwall reveal the presence of blocky slide debris, comprising heavily deformed hemipelagic slope sediments. The blocky slide debris spilled over a lower headwall 60 km downslope and formed a thick transparent debris flow unit. Cores recovered 200–250 km farther downslope contain a surficial turbidite that is interpreted to be linked to the headwall collapse event based on timing and composition. One core located approximately 200 km from the headwall scar (C13) contains debrite encased in turbidite. The debrite comprises sheared and contorted hemipelagic mudstone clasts similar as those seen in the vicinity of the Sahara Slide headwall, and lacks matrix. This debrite pinches out laterally within 25 km of C13, whereas the accompanying turbidite can be correlated across 700 km of the northwest African margin. The linked turbidite–debrite bed is interpreted to have formed through recent failure of the steep Sahara Slide headwall that either 1) generated both a debris flow and a turbidity current almost simultaneously, or 2) generated a debris flow which with entrainment of water and progressive dilution led to formation of an accompanying turbidity current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号