首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   109篇
  国内免费   80篇
地球科学   551篇
  2024年   4篇
  2023年   13篇
  2022年   24篇
  2021年   16篇
  2020年   28篇
  2019年   22篇
  2018年   14篇
  2017年   9篇
  2016年   8篇
  2015年   23篇
  2014年   29篇
  2013年   27篇
  2012年   31篇
  2011年   46篇
  2010年   44篇
  2009年   21篇
  2008年   29篇
  2007年   30篇
  2006年   17篇
  2005年   21篇
  2004年   17篇
  2003年   7篇
  2002年   10篇
  2001年   13篇
  2000年   22篇
  1999年   7篇
  1998年   1篇
  1997年   2篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有551条查询结果,搜索用时 15 毫秒
1.
一次江淮气旋暴雪的积雪特征及气象影响因子分析   总被引:4,自引:4,他引:0       下载免费PDF全文
杨成芳  刘畅 《气象》2019,45(2):191-202
利用自动站、人工加密观测及常规观测资料,通过对2017年2月21—22日一次江淮气旋暴雪过程积雪特征的分析,揭示了近地面气象要素对积雪深度的复杂影响。结果表明:(1)江淮气旋系统特有的空间结构导致山东南、北地区的降雪量和积雪深度不均衡分布。(2)积雪深度具有时效性,在降雪结束时达到峰值,因温度的变化导致峰值不一定维持到次日08时。(3)积雪深度是近地面多气象要素共同作用的结果,降水相态、降雪量、降雪强度、气温、地温和风速均有影响。主要表现为:雨夹雪在转为纯雪之前可产生不超过1 cm的积雪,如果不转雪则不会产生有量积雪;各地降雪含水比差异较大,全省平均为0. 5 cm·mm~(-1),低于全国平均值;在降雪不融化的情况下,降雪量、降雪强度越大则积雪越深,降雪强度大是气温和地温都高于0℃时产生积雪的必要条件;地温和气温越低对积雪形成越有利,积雪开始产生时的地温最高阈值多在0℃左右,地温先突降后缓升是积雪产生前后的共性特征,积雪产生后1~2 h内地温略有上升并逐渐趋于稳定;积雪产生时气温一般低于0℃,气温高于0℃时大部分降雪融化;有利于产生积雪的平均风力多不超过2级,极大风则在3~4级以下。  相似文献   
2.
利用FNL及常规资料,对比分析了2010年2月22—24日(过程Ⅰ)和2015年12月10—13日(过程Ⅱ)天山北坡2次暴雪过程。结果表明,暴雪区上空θse锋区陡立和条件性对称不稳定及次级环流是形成暴雪的主要机制。不同点是:过程Ⅰ暴雪产生在西西伯利亚低涡底部强锋区上,南北支短波槽汇合的区域,冷高压为西北路径;过程Ⅱ是乌拉尔山大槽东移北收,冷高压为偏西路径;2次过程在温压的时间演变上有显著的区别。在高低空配置上也有明显的区别:过程Ⅰ 500 hPa以下为暖平流,以上为冷平流,低层为暖湿结构;过程Ⅱ 700 hPa以下为冷平流,700—600 hPa为暖平流,低层有湿冷空气锲入。过程Ⅰ暴雪区位于θse锋区上,锋区低层强,中高层弱;过程Ⅱ暴雪区位于θse锋区中后部,锋区低层弱,中高层强。水汽输送和输入量及比湿过程Ⅰ大于过程Ⅱ。  相似文献   
3.
本文利用MICAPS4.1平台上的高空、地面、智能网格预报、集合预报等数值预报产品,对2018年10月26-28日发生在黑龙江省大兴安岭地区的一次区域性暴雪天气过程形成机制进行探讨。结果表明:高空槽后强冷空气与槽前西南暖湿气流在大兴安岭上空交汇,导致暖锋锋生,地面暖锋与低空暖式切变相互作用形成暴雪天气。暴雪的主要触发系统就是超极地冷空气促使高空槽强烈发展切涡,≥20m·s^-1的西南低空急流作为水汽输送带,为暴雪区提供了充足的水汽来源;垂直上升运动中心和散度辐合辐散中心耦合且加强,为暴雪提供了强有力的动力抬升条件,有利于上升运动的增强发展。智能网格预报产品对这次大兴安岭暴雪天气的落区、降水量级以及强降雪的时段,都预报的比较准确。  相似文献   
4.
5.
本文使用2009~2012年新疆冬季43场暴雪天气过程中ECWMF和T639L60(2.5*2.5)数值预报产品预报场资料,通过天气学检验方法,对新疆主要影响系统,即西西伯利亚低槽、乌拉尔山大槽、北方横槽、中亚低值系统和其对应的高空500hPa形势、海平面气压做72小时内的滚动预报场与相对应实况场的检验。检验结果表明:两家模式对于高空500hPa形势场预报都比较好,尤其是48h之内,ECWMF的准确率略高于T639;海平面气压场两家模式的预报准确率均低于500hPa形势场,T639要优于ECWMF,尤其是48h之内,一般海平面气压中心强度的预报值较实况会有偏小3~5hPa的误差,以上结论可较好地指导预报业务。  相似文献   
6.
黑龙江省暴雪时空分布特征与发生风险研究   总被引:2,自引:1,他引:1  
张丽娟  陈红  刘栋  张利  周东颖 《冰川冻土》2011,33(4):721-728
暴雪是黑龙江省常见的灾害性天气之一,基于1970~2006年黑龙江省78个市(县)的逐日降雪资料,对暴雪初、终日分布规律,暴雪的时间、空间分布特征进行分析,采用信息扩散理论计算了各市(县)发生不同暴雪日数的概率风险估计值,并结合GIS技术进行风险区划.研究表明:黑龙江省暴雪初始日期和终止日期37a来变化不大,初始日出现...  相似文献   
7.
北京一次冬季回流暴雪天气过程的数值分析   总被引:6,自引:0,他引:6  
李青春  程丛兰  高华  丁海燕 《气象》2011,37(11):1380-1388
回流天气是华北地区冬、春、秋季节产生降雨(雪)的主要天气类型,预报员常常因对回流天气系统结构特征认识不足和诊断失误而导致预报的失败,是降雨(雪)预报的难点和重点。利用北京地区高分辨率快速循环同化中尺度数值预报系统(BJ-RUC)对2010年1月2—3日一次典型的回流暴雪天气过程进行模拟,分析数值模式的模拟能力,研究各层主要影响系统结构特征及形成暴雪的关键性条件,探讨典型回流暴雪天气过程的形成机理。主要结论为:数值模式对此次暴雪过程的近地面回流冷空气、中低层低值系统及变化特征、主要降雪时段和降雪量模拟效果较好,对降雪落区的模拟存在一定偏差。低层回流偏东风遇到地形后引起垂直运动主要在低层800 hPa以下,所产生的降雪量不大,而其与上游850~700 hPa低涡系统发展东移其前部的上升运动汇合所形成的大范围、深厚、强烈的上升运动是产生明显降雪的关键性条件。上游低涡系统前部西南暖湿气流相对应的大湿度区移近是产生较强降雪的重要条件。持续的低层回流冷空气湿度较大,对于低层大气起到水汽输送的作用。回流冷空气使低层大气维持长时间的水汽输送并与其上层东移的大湿度区相结合,增加湿层厚度,有利于降雪持续而形成较强降雪。降雪开始时间和降雪强度的变化与对流层中下转偏南风的时间和偏南风风速增大有关。  相似文献   
8.
一次暴雪过程前后近地层物理量场特征分析   总被引:2,自引:1,他引:1  
利用铁塔风梯度观测资料和超声风温仪观测资料,对2008年1月18—21日暴雪前后,湖北黄石长江岸边近地层风场和湍流作了计算分析,探索其异常变化特征,为认识黄石地区暴雪近地层发生发展的物理过程提供依据。结果表明,暴雪前,风向转变,水平风速和垂直风速明显增大,湍流通量的输送较活跃,湍流动能和湍流强度有显著峰值出现;降雪过程结束后,湍流动能再次增大后缓慢减弱。可见此次暴雪过程前后近地层物理量场有异常变化  相似文献   
9.
一次暴雪过程的锋生函数和急流—锋面次级环流分析   总被引:4,自引:0,他引:4  
李兆慧  王东海  王建捷  刘英 《高原气象》2011,30(6):1505-1515
2008年1月25~28日一次远离地面准静止锋的锋后暴雪突破了武汉百年气象史的多项纪录。利用NCEP再分析资料、MICAPS常规观测资料和FY-2CTBB资料诊断分析了这次暴雪过程。结果表明,这次暴雪与华南准静止锋关系密切,锋生、锋消变化与降雪天气的出现和停止一致;锋生函数各项在不同时段对锋生、锋消的贡献不同;水平变形...  相似文献   
10.
2008年12月20—21日和2010年1月3日天津地区分别出现了历史同期罕见的暴雪天气。为了提高对这种极端天气发生机理的认识,利用多种资料对这两次天气过程进行了分析。结果表明:两次暴雪过程均属于回流型降雪,但环流形势和影响系统的演变却不尽相同。影响系统分别为高空横槽(高空槽)、850 hPa切变(850 hPa低涡切变)和地面倒槽(地面气旋),水汽源自700 hPa西南气流和边界层东风的水汽输送。由于两次过程均与边界层东风相伴,特别对渤海西岸边界层东风对降雪天气的影响和作用进行探讨,表明偏东风不仅为本地输送一定量级的水汽,同时这种具有冷湿特征的东风还会与内陆具有暖湿结构的偏南风形成地面辐合线,加强地面的动力抬升作用,产生上升运动,有利于雨雪天气的加强和维持,因此可以认为边界层东风对暴雪的发生发展起到了显著的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号