首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   6篇
医药卫生   58篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1993年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
1.
The melt agglomeration process of lactose powder with hydrogenated cottonseed oil (HCO) as the hydrophobic meltable binder was investigated by studying the physicochemical properties of molten HCO modified by sucrose stearates S170, S770 and S1570. The size, size distribution, micromeritic and adhesion properties of agglomerates as well as surface tension, contact angle, viscosity and specific volume of molten HCO, with and without sucrose stearates, were examined. The viscosity, specific volume and surface tension of molten HCO were found to be modified to varying extents by sucrose stearates which are available in different HLB values and melt properties. The growth of melt agglomerates was promoted predominantly by an increase in viscosity, an increase in specific volume or a decrease in surface tension of the molten binding liquid. The agglomerate growth propensity was higher with an increase in inter-particulate binding strength, agglomerate surface wetness and extent of agglomerate consolidation which enhanced the liquid migration from agglomerate core to periphery leading to an increased surface plasticity for coalescence. The inclusion of high concentrations of completely meltable sucrose stearate S170 greatly induced the growth of agglomerates through increased specific volume and viscosity of the molten binding liquid. On the other hand, the inclusion of incompletely meltable sucrose stearates S770 and S1570 promoted the agglomeration mainly via the reduction in surface tension of the molten binding liquid with declining agglomerate growth propensity at high sucrose stearate concentrations. In addition to being an agglomeration modifier, sucrose stearate demonstrated anti-adherent property in melt agglomeration process. The properties of molten HCO and melt agglomerates were dependent on the type and concentration of sucrose stearate added.  相似文献   
2.
ObjectivesDecellularization aims to harness the regenerative properties of native extracellular matrix. The objective of this study was to evaluate different methods of decellularization of periodontal ligament cell sheets whilst maintaining their structural and biological integrity.DesignHuman periodontal ligament cell sheets were placed onto melt electrospun polycaprolactone (PCL) membranes that reinforced the cell sheets during the various decellularization protocols. These cell sheet constructs (CSCs) were decellularized under static/perfusion conditions using a) 20 mM ammonium hydroxide (NH4OH)/Triton X-100, 0.5% v/v; and b) sodium dodecyl sulfate (SDS, 0.2% v/v), both +/− DNase besides Freeze–thaw (F/T) cycling method. CSCs were assessed using a collagen quantification assay, immunostaining and scanning electron microscopy. Residual fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were assessed with Bio-plex assays.ResultsDNA removal without DNase was higher under static conditions. However, after DNase treatment, there were no differences between the different decellularization methods with virtually 100% DNA removal. DNA elimination in F/T was less efficient even after DNase treatment. Collagen content was preserved with all techniques, except with SDS treatment. Structural integrity was preserved after NH4OH/Triton X-100 and F/T treatment, while SDS altered the extracellular matrix structure. Growth factor amounts were reduced after decellularization with all methods, with the greatest reduction (to virtually undetectable amounts) following SDS treatment, while NH4OH/Triton X-100 and DNase treatment resulted in approximately 10% retention.ConclusionsThis study showed that treatment with NH4OH/Triton X-100 and DNase solution was the most efficient method for DNA removal and the preservation of extracellular matrix integrity and growth factors retention.  相似文献   
3.
The poor solubility and low dissolution rate in gastro-intestinal fluid, especially for class-II drugs according to Biopharmaceutics Classification System (BCS) the bioavailability enhanced by increasing the solubility and dissolution rate. A novel melt sonocrystallization technique of particle engineering to enhance solubility as well as dissolution of hydrophobic drug and to study its effect on crystal properties of drug. The present study leads to use investigate solubility of melt sonocrystallization technique to modify the undesirable properties of Rosiglitazone is antidiabetic drug in thiozolidione category with (BCS II) to forms agglomerates with number of shallow circular pits on the surface leads to increase solubility. Melt sonocrystallization process was developed for Rosiglitazone in which Rosiglitazone melt was poured in deionized water and simultaneously subjected to ultrasonic energy for 20 min at amplitude 80 %. The product obtained was evaluated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffractometry (XPRD), Fourier transformed infrared spectroscopy (FTIR), solubility and dissolution rate. The irregular agglomerates with porous surface were obtained having different crystal habit which increases solubility and dissolution rate. FTIR shows thermal behavior of untreated Rosiglitazone and treated Rosiglitazone have no significant difference low intensity peaks in XPRD of treated Rosiglitazone were noticed crystals habit changes and lattice defects during processing have causes favorable changes in the physicochemical properties of Rosiglitazone. The use of melt sonocrystallization technique is promising technique that may affords powder with improved flow as well as improved solubility and dissolution.  相似文献   
4.
Conventional manufacturing of pharmaceutical tablets often involves single processes such as blending, granulation, milling and direct compression. A process that minimizes and incorporates all these in a single continuous step is desirable. The concept of omitting milling step followed by direct-molding of tablets utilizing a twin-screw extruder in a melt granulation process using thermoplastic binders was explored. The objective of this study was to investigate the effect of combining hydrophilic binder (HPMC K4M, PEO 1M), and hydrophobic binder (Compritol® ATO 888, Precirol® ATO 5) on the release profiles of direct-molded tablets and direct-compressed tablets from milled extrudates using a quality-by-design approach. It was identified that hydrophilic binder type and process significantly affects (p = 0.005) the release profiles of verapamil. Moreover, two-way interaction analysis demonstrated that the combination of process with type of hydrophilic polymer (p = 0.028) and the type of hydrophilic polymer with polymer ratio (p = 0.033) significantly affected the release profiles. The formulation release kinetics correlated to Higuchi release model and the mechanism correlated to a non-Fickian release mechanism. The results of the present study indicated that direct-molded tablets with different release profiles can be manufactured without milling process and through a continuous melt granulation using twin-screw extruder with appropriate thermoplastic binder ratio.  相似文献   
5.
The low efficiency of fabrication of ultrahigh molecular weight polyethylene (UHMWPE)-based artificial knee joint implants is a bottleneck problem because of its extremely high melt viscosity. We prepared melt processable UHMWPE (MP-UHMWPE) by addition of 9.8 wt% ultralow molecular weight polyethylene (ULMWPE) as a flow accelerator. More importantly, an intense shear flow was applied during injection molding of MP-UHMWPE, which on one hand, promoted the self-diffusion of UHMWPE chains, thus effectively reducing the structural defects; on the other hand, increased the overall crystallinity and induced the formation of self-reinforcing superstructure, i.e., interlocked shish-kebabs and oriented lamellae. Aside from the good biocompatibility, and the superior fatigue and wear resistance to the compression-molded UHMWPE, the injection-molded MP-UHMWPE exhibits a noteworthy enhancement in tensile properties and impact strength, where the yield strength increases to 46.3 ± 4.4 MPa with an increment of 128.0%, the ultimate tensile strength and Young's modulus rise remarkably up to 65.5 ± 5.0 MPa and 1248.7 ± 45.3 MPa, respectively, and the impact strength reaches 90.6 kJ/m2. These results suggested such melt processed and self-reinforced UHMWPE parts hold a great application promise for use of knee joint implants, particularly for younger and more active patients. Our work sets up a new method to fabricate high-performance UHMWPE implants by tailoring the superstructure during thermoplastic processing.  相似文献   
6.
Melt extrusion (ME) over recent years has found widespread application as a viable drug delivery option in the drug development process. ME applications include taste masking, solid-state stability enhancement, sustained drug release and solubility enhancement. While ME can result in amorphous or crystalline solid dispersions depending upon several factors, solubility enhancement applications are centered around generating amorphous dispersions, primarily because of the free energy benefits they offer. In line with the purview of the current issue, this review assesses the utility of ME as a means of enhancing solubility of poorly soluble drugs/chemicals. The review describes major processing aspects of ME technology, definition and understanding of the amorphous state, manufacturability, analytical characterization and biopharmaceutical performance testing to better understand the strength and weakness of this formulation strategy for poorly soluble drugs. In addition, this paper highlights the potential advantages of employing a fusion of techniques, including pharmaceutical co-crystals and spray drying/solvent evaporation, facilitating the design of formulations of API exhibiting specific physico-chemical characteristics. Finally, the review presents some successful case studies of commercialized ME based products.  相似文献   
7.
目的:探讨常规根管预备后使用半导体激光进行根管内照射对根尖封闭性能的影响.方法:选择新鲜拔除的单根管牙60 颗,分6 组(n=10),去除牙冠,常规根管预备.A、B组,半导体激光1 W照射20 s;C、D组,超声荡洗1 min;E、F组,不做任何处理,作为对照组.常规热牙胶垂直加压法充填6 组牙根.微渗漏实验对根充后的A、C、E组牙的根尖封闭性能进行评估,扫描电镜观察B、D、F组牙根剖面.结果:A、C、E组根管微渗漏(mm)分别为1.70±0.82、2.02±0.40和4.56±2.76(A vs E,P<0.01;C vs E,P<0.05,A vs C,P>0.05),扫描电镜观察到激光组大部分牙本质小管发生熔融、缩小或封闭,超声荡洗组大部分牙本质小管内有糊剂或牙胶进入.结论:半导体激光进行根管内照射可以显著提高根充后根尖的封闭性能.  相似文献   
8.
通过熔融缩聚法合成了一类侧链含有非线性光学基元的共聚酯,用FTIR,NMR和元素分析等对单体和聚合物进行了表征,并用DSC,WAXD和偏光显微镜等对聚合物的相转变行为进行了研究,发现规整侧链的引入仍然结晶聚合物,对其结晶相的成因进行了初步分析。  相似文献   
9.
Recrystallization is one of the main problems concerning the stability of solid dispersions. Different analytical methods were applied showing that no recrystallization occurred after treating melt extruded solid dispersions with 17β-Estradiol as the model drug with heat or water vapor. A skillful choice of excipients—a combination of polymers and additives—could be the reason for improving the stability. The requirements of the USP 23 for Estradiol tablets of 75% dissolved drug after 60 min were fulfilled after storing the tablets for 6 months at 40°C/75% RH. By observing the change in glass transition temperature, DSC analysis showed that the solid dispersions were stable against thermal stress. Isothermal microcalorimetry as well as moisture absorption gravimetry were methods to prove the stability of the solid dispersions against water vapor.  相似文献   
10.
Toxin-producing cyanobacteria are a worldwide threat to both human and animal health. The hepatotoxins microcystin and nodularin are the most commonly occurring toxins produced by bloom-forming cyanobacteria. They are cyclic peptides that are synthesized nonribosomally by a multienzyme complexes encoded within the microcystin (mcyS) and nodularin (ndaS) synthetase gene clusters. Early detection of potentially toxic blooms would allow for pre-emptive action to reduce consumer exposure to cyanotoxins. We have developed a quantitative PCR (qPCR) assay based on SYBR-green chemistry for the detection of potentially hepatotoxic cyanobacteria spanning all known microcystin and nodularin producing taxa using primers specifically targeting mcyE and ndaF. The qPCR assay was validated against previously analyzed cyanobacterial bloom samples. Whole cell qPCR using cultured M. aeruginosa PCC7806 and non-toxic M. aeruginosa UTEX2386 had a sensitivity of 1000 cells ml−1. In summary, we have developed a robust and sensitive molecular method for the detection and quantification of hepatotoxigenic cyanobacteria in bloom samples. This technology offers several advantages over traditional and contemporary testing protocols currently used to assess water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号