首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
工业技术   57篇
  2015年   6篇
  2014年   1篇
  2012年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   4篇
  2002年   11篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1996年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
In principle, absorption chillers of the ammonia-water type could work at temperatures well below the usual air-conditioning temperatures, arriving at the range 250–260 K, which can be useful for refrigeration applications. This possibility is studied for an air-cooled machine, comparing the results with the experimental data supplied by a manufacturer that recently commercialized such a refrigerator. The prediction is fair, and the study allows an insight into the internal parameters and into the possible behaviour for more severe conditions than those studied.  相似文献   
2.
The objectives of this paper are to quantify the effect of Marangini convection on the absorption performance for the ammonia–water absorption process, and to visualize Marangoni convection that is induced by adding a heat transfer additive, n-octanol. A real-time single-wavelength holographic interferometer is used for the visualization using a He–Ne gas laser. The interface temperature is always the highest due to the absorption heat release near the interface. It was found that the thermal boundary layer (TBL) increased faster than the diffusion boundary layer (DBL), and the DBL thickness increased by adding the heat transfer additive. At 5 s after absorption started, the DBL thickness for 5 mass% NH3 without and with the heat transfer additive was 3.0 and 4.5 mm, respectively. Marangoni convection was observed near the interface only in the cases with heat transfer additive. The Marangoni convection was very strong just after the absorption started and it weakened as time elapsed. It was concluded that the absorption performance could be improved by increasing the absorption driving potential (xvbxvi) and by increasing the heat transfer additive concentration. The absorption heat transfer was enhanced as high as 3.0–4.6 times by adding the heat transfer additive that generated Marangoni convection.  相似文献   
3.
The search for high-efficiency, gas-fired cooling cycles has led to the development of dual-loop absorption machines with cooling coefficients of performance (COPs) in the 1.2 to 1.7 range. This increased performance may call for high generator temperatures, new working fluids or new materials of construction. In most cases, two different sets of working fluids are required. The conceptual design presented here is aimed at obtaining high efficiencies with relatively low temperatures, employing only one set of fluids. The concept consists of two loops coupled in a configuration aimed at minimizing the loss of thermodynamic availability incurred when transferring refrigerant between the loops. The working fluid pair is a solution of lithium bromide-water. The calculated COPs are of the order of 1.8. The cycle relies on an elaborate evaporator-absorber combination. The paper presents the conceptual design, the critical assumptions, and the performance calculations for the concept.  相似文献   
4.
Water-silicone oil emulsion with an additive, (C2H5O)3SiC3H6NH2, was examined as a heat storage material. A spiral tube used as a heat exchanger was immersed in a low temperature bath and the emulsion was circulated in the tube to make ice continuously. Ice was separated from the ice–liquid suspension in an outlet tank. The amount of formed ice, the temperatures of the inlet and the outlet of the heat exchanger, and the temperatures in the tube wall were measured and the overall heat transfer coefficient and the heat flux through the tube were calculated. Experiments were carried out, varying the flow rate, the temperature of cooling brine, and the thickness of tube wall. The condition under which slurry ice was formed continuously without adhesion of ice to the cooling wall was clarified. Though decrease in the thermal resistance of the tube increased the rate of ice formation or raised the brine temperature, it narrowed the range of the flow rate and of the brine temperature in which slurry ice was formed continuously.  相似文献   
5.
The use of activated carbon beds for the removal of natural humic and fulvic substances found in water supplies, has recently received considerable attention in water treatment operation (Lee et al., 1980; Le Cloirec et al., 1983). Moreover, the use of carbon adsorption for the reduction of haloform precursors (Anderson et al., 1981) and trihalomethanes produced by chlorination process, has contributed to a comprehensive investigation of adsorption characteristics of natural organic compounds (McCreary and Snoeyink, 1981). Many recent works showed the influence of adsorption system characteristics, such as pH, salt type, salt concentration and ionic heterogeneity in multicomponent adsorption systems, on the removal efficiency of humic and fulvic substances by activated carbon (McCreary and Snoeyink, 1980; Randtke and Jepsen, 1982; Weber et al., 1983). The purpose of this study is to examine the effect of a main component of domestic detergents, sodium triphosphate (STP), on the adsorptive capacities of powdered activated carbon (PAC) for commercially supplied humic acids, at different pH values in distilled water. Also, the effect of STP concentration and pH on the adsorption affinity of the PAC for humic acids, is discussed in relation with electrokinetic properties of carbon particles (zeta potential measurements).A first batch equilibrium study (Figs 1 and 2), showed an effective enhancement of adsorption capacity for humic acids as a function of STP concentration, in a non buffered media (pH of distilled water, close to 5.0). For example, visible absorption analysis of humic acids indicates an increase of 93% (500 mg l?1 PAC) and 133% (1000 mg l?1 PAC) in the carbon adsorption efficiency for a STP concentration from 0.2 to 1.0mM. A second batch equilibrium study (Figs 3 and 4) led to adsorption isotherms for humic acids in distilled water, as a function of STP concentration and initial pH value of the non buffered multicomponent system. Freundlich isotherms showed an increase in the adsorption capacity of the PAC for humic acids, with a decrease in pH and an increase in STP concentration. However, the adsorption capacity for humic acids is quite reduced at high pH values in presence of STP, in comparison with results obtained with distilled water.Electrokinetic measurements on PAC suspensions (Fig. 5) indicates that both humic acids and STP induce a negative variation of the zeta potential of carbon particles. In such a binary system, the zeta potential is a linear function of the pH; the negative surface charge of the carbon increasing with an elevation of pH (Fig. 6). Therefore, it appears that some adsorption of triphosphate polyanion from solution could occur, contributing then to the apparent negative surface charge of PAC particles.It has been previously showed that the type of anion in sodium salts, had little effect on the enhancement of adsorptive capacities of activated carbon for humic substances (Lafrance and Mazet, 1985), due to Na+ ions. However, adsorption of TP anions on the carbon surface may produce a source of repulsive charges, unfavourable to the co-adsorption of humic acids as the pH of the binary system reach more basic conditions. The influence of possible electrostatic interactions between adsorbates at the carbon surface, on the adsorption efficiency for humic acids, could then be studied by zeta potential measurements of PAC particles during the adsorption process.  相似文献   
6.
For the purpose of determining the optimum operation condition of liquid-ice thermal storage system, the performance analysis has been carried out. The target system was consisted of refrigerator, its auxiliary devices, liquid-ice production device, piping system, and thermal load section. The system performances were widely investigated analytically for the variety of operation conditions including the cycle performance of a refrigerator. The optimum operation condition of the liquid-ice thermal storage system from the viewpoint of coefficient of performance and the performance of heat release were discussed.  相似文献   
7.
Résumé. Un essai de longue durée est réalisé sur un matériau d'étanchéité, l'argile du Gault. Par une infiltration continue du lixiviat de scories, sous une charge hydraulique constante de 98,5 cm, nous avons suivi la variation spatio-temporelle de l'humidité θ (z, t) et de la conductivité électrique σ (z, t) dans une colonne du sol. La relation entre la teneur en eau volumique (θ) et la constante diélectrique (ε) du sol est établie en utilisant la méthode TDR. Nous avons également établi une relation entre la fraction soluble de la solution et sa conductivité électrique. Cette relation permet de suivre la distribution spatio-temporelle du soluté dans la couche de sol. Plusieurs chercheurs ont montré qu'il est possible de tracer les courbes d'élution d'un traceur non réactif en utilisant la méthode TDR. Cette méthode permet alors d'éviter l'utilisation des bougies poreuses d'extraction des solutions du sol et les analyses chimiques co?teuses de l'éluant. Les résultats des essais d'infiltration effectués sur la couche d'argile montrent que la conductivité électrique mesurée à l'aide des sondes TDR sert à localiser la fraction soluble dans la colonne. Le coefficient de dispersion calculé est resté constant au cours du temps autour d'une valeur moyenne de 1,5×10–10 m2/s. Ce qui montre que le coefficient de dispersion n'est pas très influencé par le sol et par son degré de saturation. Electronic Publication  相似文献   
8.
This article develops a general thermodynamic framework for the modeling of an irreversible absorption chiller at the design point, with application to a single-stage ammonia–water absorption chiller. Component models of the chiller have been assembled so as to quantify the internal entropy production and thermal conductance (UA) in a thermodynamically rigorous formalism, which is in agreement with the simultaneous heat-and-mass transfer processes occurring within the exchangers. Local thermodynamic balance (viz. energy, entropy, and mass balance) and consistency within the components is respected, in addition to the overall thermodynamic balance as determined by the inlet and outlet states of the components. For the absorbers, Colburn-and-Drew mass transfer equations are incorporated to describe the absorption process. Furthermore, the impact of various irreversibilities on the performance of chiller is also evaluated through the use of a general macroscopic equation.  相似文献   
9.
The thermodynamic properties (solubility, vapour pressure, density, viscosity, heat capacity and heat of mixing) of the H2O + CH3OH + LiBr + ZnCl2 (9:1 H2O:CH3OH and 1:1 LiBr:ZnCl2 by mass) system using H2O + CH3OH as the working media and LiBr + ZnCl2 as the absorbents were measured. The solubility data were obtained in the temperature range from 270.35 to 389.55 K. The measurements of vapour pressure, density, viscosity and heat capacity were carried out at various temperatures and absorbent concentrations. The differential heat of dilution and differential heat of solution at 298.15 K were measured for solutionw with absorbent concentrations from 0 to 75.2 wt%. The integral heat of mixing data at 298.15 K were obtained from both sets of experimental data. The integral heats of mixing for this quaternary system showed exothermic behaviour. The vapour pressure data were correlated with an Antoine-type equation. An empirical formula for the heat capacity was obtained from experimental data. The experimental data for the basic thermodynamic properties of this quaternary system were compared with those of the basic H2O + LiBr system.  相似文献   
10.
Interfacial tension between the two phases formed by the partially miscible system composed of butanol-1 and water has been investigated. Using the method of drop volume tensiometry, the effect of a surface-active agent, sodium dodecyl sulfate, on interfacial tension was investigated. Addition of surfactant to the butanol-rich phase, which forms the droplet, has been found to bring about a decrease in interfacial tension the magnitude of which was influenced by the time of contact. When the surfactant was added to the aqueous (bulk) phase, the decrease in interfacial tension was greater and it was equal to that observed when the surfactant was added to both phases. It is concluded that the orientation of phases in the instrument has an important effect on the apparent interfacial tension observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号