首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   1篇
  国内免费   6篇
工业技术   148篇
  2023年   10篇
  2022年   11篇
  2021年   13篇
  2020年   6篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   12篇
  2013年   9篇
  2012年   6篇
  2011年   17篇
  2010年   17篇
  2009年   13篇
  2008年   4篇
  2007年   4篇
  2005年   1篇
排序方式: 共有148条查询结果,搜索用时 171 毫秒
1.
2.
The efficient separation of water-in-oil emulsion is of significance in environment and energy filed, and it has become a world-wide challenge. Herein, we have presented a one-step, facile and low-cost approach to prepare superhydrophobic sands for efficient separation of water-in-oil emulsion. The as-prepared sand layers possessed a water contact angle higher than 151°, demonstrating their superior superhydrophobic property. Besides, the as-prepared sand layers could separate water-in-emulsions with separation efficiency up to 99.7%, which is superior to both traditional and superwettable filtration membranes. The effect of thickness of sand layer on separation performance was also investigated. The results showed that the filtration flux decreased with the increased of filtration thickness while the separation efficiency increased. The as-prepared sand layer proposed by this study is a processing candidate for separating water-in-oil emulsion in practical industry. Additionally,the as-prepared superhydrophobic sand fabrication method also provides an alternative for desert water storage.  相似文献   
3.
杨硕  张文梦  陈栋阳 《精细化工》2021,38(4):749-756
以聚二甲基硅氧烷(PDMS)和纳米SiO2掺杂聚芴醚酮(PFEK),采用溶液喷涂法在纸张表面构筑了耐用的超疏水涂层.考察了PDMS和SiO2用量(以PFEK和N-甲基吡咯烷酮的质量为基准,下同)对纸张水接触角的影响.结果表明,当PDMS和SiO2用量均为2%时,纸张表面的水接触角达到最大值170?,滚动角最小值为1?,聚合物将SiO2固定在纸张纤维上,使其表面呈现微纳米粗糙结构.超疏水性源于这种疏水粗糙表面下积蓄的空气对液滴浸润的抑制.制得的PFEK/PDMS/SiO2喷涂纸经过40个摩擦周期或12次对折测试后,其水接触角仍达到150°以上,能够维持超疏水性能,并具有较好的机械稳定性.拉伸测试表明,涂层将普通纸张的拉伸强度从10.1 MPa增强到37.8 MPa,在水中浸泡15 min后,该喷涂纸的拉伸强度为25 MPa,仍具有较好的力学性能.另外,PFEK/PDMS/SiO2喷涂纸能够抵抗黏稠泥土的污染,表现良好的自清洁性能.  相似文献   
4.
Preparation of superhydrophobic silica-based surfaces via sol-gel process by adding polypropylene glycol (PPG) polymer into the precursor solution has been developed. Surface roughness of the films was obtained by removing the organic polymer at 500 °C and then the hydrophobic groups bonded onto the films were obtained by chemical reaction with hexamethyldisilazane (HMDS). Physical properties of the as-prepared films were analyzed by contact angle measurements, scanning electron microscopy (SEM), UV-VIS scanning spectrophotometer and Fourier transform infrared (FT-IR) spectrophotometer. The experimental parameters were varied by the type of silane species, the weight ratio of PPG solution to precursor solution, the hydrolysis time of the precursor solution, the molecular weight of PPG, the casting temperature and the evaporation temperature. The phase separation of the PPG polymer rich domain occurred on the substrates at a lower temperature. The result showed that the contact angles of the films prepared at 5 °C were greater than 150° when the weight ratio of PPG solution to precursor solution was 5. In addition, the transmittance of the films was greater than 80% simultaneously.  相似文献   
5.
A superhydrophobic micromesh covered with nanoprotrusions has been introduced and its applicability to a waterproof mobile phone speaker has been evaluated. The nanotextured superhydrophobic micromesh showed excellent water repellency, self-cleaning and waterproofing performances. In a waterproof speaker test using the fabricated nanotextured micromesh, the micromesh did not lose its waterproof function at 2 m water depth and did not form a remnant water film after being removed from the water. The packaged speaker showed almost the same sound quality before and after dipping at a 2 m water depth. These results demonstrate that the superhydrophobic nanotextured micromesh could be directly applicable for various products that need to resist water penetration, yet allow the transmission of gases and sound/light waves.  相似文献   
6.
In order to mimic and enhance the properties of moth eye-like materials, nanopatterned fused silica was chemically modified to produce self-cleaning substrates that have anti-reflective and infrared transmissive properties. The characteristics of these substrates were evaluated before and after chemical modification. Furthermore, their properties were compared to fused silica that was devoid of surface features. The chemical modification imparted superhydrophobic character to the substrates, as demonstrated by the average water contact angles which exceeded 170°. Finally, optical analysis of the substrates revealed that the infrared transmission capabilities of the fused silica substrates (nanopatterned to have moth eye on one side) were superior to those of the regular fused silica substrates within the visible and near-infrared region of the light spectrum, with transmission values of 95% versus 92%, respectively. The superior transmission properties of the fused silica moth eye were virtually unchanged following chemical modification.  相似文献   
7.
《Ceramics International》2022,48(16):23527-23535
Inspired by the surface structure of lotus leaves, micro–nano hierarchical surface structures have been widely used for designing superhydrophobic surfaces. However, the conventionally designed superhydrophobic surface structures are fragile. In this study, a layer of micron-sized mullite whiskers was grown using molten salt on the surface of BaAl2Si2O8 (BAS) glass ceramics. Subsquently, SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane were sprayed onto the whisker layer to form a superhydrophobic surface. The nanoparticles exhibit superhydrophobicity, which is protected by the whisker layer containing pores and bulges. This prohibits direct contact between the nanoparticles and external objects. Contact and rolling angle tests indicated that the surface contact angle of the micro–nano hierarchical structure is 158° and the rolling angle is less than 10°. The stability of the superhydrophobic surface was tested through ultraviolet light, long-time immersion in solutions with various pH values, water scouring, and sandpaper abrasion. The results showed that the contact angle is greater than 150°. This study is expected to provide a simple and effective method for fabricating superhydrophobic surfaces on ceramics on a large scale.  相似文献   
8.
A superhydrophobic coating was synthesized by in-situ reaction of fumed silica nanoparticles and a co-precursor which contains methyltrimethoxysilane (MTMS), propyltrimethoxysilane (PTMS), and diphenyldimethoxysilane (DPDS). The superhydrophobic surface was achieved by the spray of above mixtures on the substrates. Micro/nano structure of the surface was controlled by the silica nanoparticles. The wetting behavior of the surface was enhanced after coated and obtained a maximum 154o static water contact angle and a minimum 1o sliding angle. The surface retained its superhydrophobicity as well as good corrosive resistance and adhesion at a high temperature of 460?°C. Damage to the superhydrophobic coatings caused by extremely low temperature or mechanical force could be easily repaired through a heat treatment or a new spray.  相似文献   
9.
Organic–inorganic hybrid coatings on glass substrates with superhydrophobic properties and with improved scratch resistance were obtained by means of applying a multilayer approach including multiple sol–gel processes. The coatings exhibited a water contact angle (WCA) higher than 150°. Ultraviolet (UV)-curable vinyl ester resins and vinyltriethoxysilane (VTEOS) as coupling agent were employed to increase the adhesion between substrate and the inorganic layers. The surfaces were characterized by means of dynamic contact angle and roughness measurements. Indeed, the occurrence of superhydrophobic behavior was observed. The scratch resistance of the hybrid coatings was tested to evaluate the adhesion of the coatings to the glass substrate. The proposed preparation method for scratch resistant, mechanically stable, superhydrophobic coatings is simple and can be applied on large areas of different kinds of substrates.  相似文献   
10.
《Ceramics International》2023,49(15):25135-25143
In this paper, 304 stainless steel-based ZnO (304SS-based ZnO) seed layer was prepared by using sol-gel method or electrochemical deposition. Superhydrophobic nano-ZnO (CSS–ZnO) surface were prepared on its surface by hydrothermal method. The results show that different structural morphologies of 304SS-based ZnO surface were prepared by varying different seed layer preparation methods. In the static icing test, compared with hydrophilic nano-ZnO (SS–ZnO) surface, hydrophobic nano-ZnO (QS-ZnO) surface and 304SS surface at −5 °C, −10 °C and −15 °C. The icing time of CSS-ZnO surface was prolonged by about 2.7 h at −5 °C, delayed by about 40 min at −10 °C and delayed by about 9 min at −15 °C. The CSS-ZnO surface is the most effective surface in static anti-icing. It is because that there has a residual air layer at the solid-liquid interface and the coating can still effectively retard ice formation in a partially wetted state. In the dynamic icing test, compared with QS-ZnO surface, SS-ZnO surface and 304SS surface at −16 °C, SS-ZnO surface and QS-ZnO surface have no anti-icing effect, and CSS-ZnO surface has a significant anti-icing effect. The mechanism for inhibiting condensation of water droplets by superhydrophobic surfaces was illustrated, which can be identified that the contact angle of the ice embryo will increase with the increase of the water contact angle. This work provides a practical application for promoting anti-icing ability of 304SS surfaces in industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号