首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47003篇
  免费   3723篇
  国内免费   2607篇
工业技术   53333篇
  2024年   99篇
  2023年   625篇
  2022年   929篇
  2021年   1611篇
  2020年   1233篇
  2019年   1076篇
  2018年   958篇
  2017年   1342篇
  2016年   1691篇
  2015年   1661篇
  2014年   2457篇
  2013年   2546篇
  2012年   2948篇
  2011年   3697篇
  2010年   2715篇
  2009年   3227篇
  2008年   2635篇
  2007年   3247篇
  2006年   3011篇
  2005年   2446篇
  2004年   2009篇
  2003年   1979篇
  2002年   1648篇
  2001年   1274篇
  2000年   1110篇
  1999年   882篇
  1998年   670篇
  1997年   500篇
  1996年   449篇
  1995年   361篇
  1994年   319篇
  1993年   277篇
  1992年   229篇
  1991年   199篇
  1990年   138篇
  1989年   118篇
  1988年   82篇
  1987年   78篇
  1986年   89篇
  1985年   82篇
  1984年   75篇
  1983年   67篇
  1982年   62篇
  1981年   58篇
  1979年   49篇
  1978年   49篇
  1977年   54篇
  1976年   61篇
  1975年   71篇
  1974年   71篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
2.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
3.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
4.
Direct allorecognition is the earliest and most potent immune response against a kidney allograft. Currently, it is thought that passenger donor professional antigen-presenting cells (APCs) are responsible. Further, many studies support that graft ischemia-reperfusion injury increases the probability of acute rejection. We evaluated the possible role of primary human proximal renal tubular epithelial cells (RPTECs) in direct allorecognition by CD4+ T-cells and the effect of anoxia-reoxygenation. In cell culture, we detected that RPTECs express all the required molecules for CD4+ T-cell activation (HLA-DR, CD80, and ICAM-1). Anoxia-reoxygenation decreased HLA-DR and CD80 but increased ICAM-1. Following this, RPTECs were co-cultured with alloreactive CD4+ T-cells. In T-cells, zeta chain phosphorylation and c-Myc increased, indicating activation of T-cell receptor and co-stimulation signal transduction pathways, respectively. T-cell proliferation assessed with bromodeoxyuridine assay and with the marker Ki-67 increased. Previous culture of RPTECs under anoxia raised all the above parameters in T-cells. FOXP3 remained unaffected in all cases, signifying that proliferating T-cells were not differentiated towards a regulatory phenotype. Our results support that direct allorecognition may be mediated by RPTECs even in the absence of donor-derived professional APCs. Also, ischemia-reperfusion injury of the graft may enhance the above capacity of RPTECs, increasing the possibility of acute rejection.  相似文献   
5.
The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.  相似文献   
6.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   
7.
8.
9.
In the present study, spinel structure CoFe2O4 nanoparticles were successfully synthesized by the sol-gel auto-combustion technique. The effect of apple cider vinegar (ACV) addition as an organic biocompatible agent on the size, morphology, and magnetic properties of CoFe2O4 nanoparticles was investigated in detail. The phase evolution, particle size, and lattice parameter changes of the synthesized phase have been estimated by using Rietveld structure refinement analysis of X-ray powder diffraction data. Also, Fourier transform infrared spectra (FT-IR) of the samples verified the presence of two expected bands correspond to tetrahedral and octahedral metal-oxygen complexes within the spinel structure. Furthermore, microstructural observations revealed that ultrafine particles have a semi-spherical morphology. It was shown that the particles size decreased from ~45 to ~17 nm with an increase in the amount of ACV. Magnetic properties were carried out by vibrating sample magnetometer (VSM) at room temperature. Both the saturation magnetization (Ms) and coercivity (Hc) were found to be significantly dependent on the crystallite size and the amount of ACV.  相似文献   
10.
《Ceramics International》2020,46(3):3190-3202
In this study, nuclear shielding qualities of glass-ceramics with chemical composition Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 containing different amount of BaO and PbO were investigated. The μρ values were simulated using GEANT4 toolkit at 0.015–20 MeV wide energy range and the obtained results were verified by theoretical WinXCOM results. The variables such as μρ, HVL, MFP, Zeff, Neff, EBF and EABF were computed to determine the gamma-ray shielding performances of studied glass ceramics. The results revealed that increase in PBO and BaO percentages in glass samples has caused to decrease the HVL, MFP, EBF and EABF values and increase μρ, Zeff values. It has been seen that N28 and S24 samples own superior protection ability against gamma radiation. In addition, the shielding capacity of these glass ceramics against charged and uncharged particles were predicted by determination of MSP and PR values for alpha, proton and ΣR values for neutrons. It has been concluded that PbO and BaO addition improve radiation shielding competences of glass ceramics. The data obtained from this study will be beneficial for designing glass ceramics shields for radiation protection enforcements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号