首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11351篇
  免费   2694篇
  国内免费   469篇
地球科学   14514篇
  2024年   37篇
  2023年   135篇
  2022年   266篇
  2021年   431篇
  2020年   375篇
  2019年   405篇
  2018年   410篇
  2017年   402篇
  2016年   285篇
  2015年   465篇
  2014年   578篇
  2013年   609篇
  2012年   572篇
  2011年   624篇
  2010年   584篇
  2009年   818篇
  2008年   582篇
  2007年   653篇
  2006年   627篇
  2005年   641篇
  2004年   575篇
  2003年   567篇
  2002年   451篇
  2001年   423篇
  2000年   396篇
  1999年   333篇
  1998年   341篇
  1997年   321篇
  1996年   336篇
  1995年   286篇
  1994年   273篇
  1993年   214篇
  1992年   173篇
  1991年   97篇
  1990年   69篇
  1989年   50篇
  1988年   44篇
  1987年   17篇
  1986年   14篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1979年   15篇
  1978年   1篇
  1977年   1篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《地震地质》1994,16(4):373
对新编的华北地区历史有感地震目录(3(1/2)≤M<4(1/2))的精度和可信度进行了讨论。认为该地震目录从1484年后的记载率较高,它的发震时间、震中位置和震级的精度基本可以满足研究历史地震活动性的需要。它与中国地震目录(M≥4(3/4))比较,补充了相当数量的3(1/2)≤M≤4(1/2)的地震。利用历史有感地震目录分析了华北北部部分6级以上的历史地震,结果表明,这些地震在强震发生前具有明显的空区、条带、地震活动性增强、平静等前兆特征,同时,也显示了某些强*发生前的前震活动和主震之后起伏的强余震活动  相似文献   
2.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
3.
Current plate motions   总被引:57,自引:0,他引:57  
  相似文献   
4.
Morphologic studies of an oceanic transform, the Blanco Transform Fault Zone (BTFZ), have shown it to consist of a series of extensional basins that offset the major strike-slip faults. The largest of the extensional basins, the Cascadia Depression, effectively divides the transform into a northwest segment, composed of several relatively short strike-slip faults, and a southeast segment dominated by fewer, longer faults. The regional seismicity distribution (m b 4.0) and frequency-magnitude relationships (b-values) of the BTFZ show that the largest magnitude events are located on the southeast segment. Furthermore, estimates of the cumulative seismic moment release and seismic moment release rate along the southeast segment are significantly greater than that of the northwest segment. These observations suggest that slip along the southeast segment is accommodated by a greater number of large magnitude earthquakes. Comparison of the seismic moment rate, derived from empirical estimates, with the seismic moment rate determined from plate motion constraints suggests a difference in the seismic coupling strength between the segments. This difference in coupling may partially explain the disparity in earthquake size distribution. However, the results appear to confirm the relation between earthquake size and fault length, observed along continental strike-slip faults, for this oceanic transform.  相似文献   
5.
"5.12"四川汶川8级大地震发生后,中国国土资源航空物探遥感中心立即采用"赛斯纳"高空遥感飞机,携带高清晰彩色数码相机及先进的POS系统,迅速获取了重灾区的航摄图像数据。本文以震中附近的映秀镇地区为例,简要介绍了以该高质量航摄数据为基础,采用数字滑坡技术,快速进行震后重灾区灾情及次生地质灾害遥感调查的成果。  相似文献   
6.
Daily averaged tilt component data from two sites of the Central Apennines (Italy) and of the Southern Caucasus (Georgia), respectively, revealed intermediate-term tilts as possible precursors to earthquakes (M=3.0÷4.7) which occurred in the above-mentioned seismic areas within a distance of 50 km from the sites. A good temporal correlation as well as a fair spatial correspondence between these residual tilts (with amplitude and duration of some microradians and months, respectively) and main shocks were pointed out, by removing both secular trends and seasonal thermoelastic effects from the raw tilts. An attempt was made to justify the above-mentioned results, based on the assumption that the observed intermediate-term preseismic tilts are the manifestation of aseismic creep episodes of comparable duration in the fault materials of thrust faults close to the tilt sites. The mechanism refers to a strain field slowly propagating from the preparation focal area to the tilt site, through crustal blocks separated by weak transition zones. This propagation is thought to be the cause of the local aseismic fault slip recorded by the tiltmeters. Previously, both discrete structures and strain propagation effects were revealed in the Central Apennines and are thought also to exist in the Southern Caucasus. As in the past, the rheological properties of fault materials are revealed as viscoelastic ones. In fact, creep equations obtained by applying several viscoelastic models on our data, proved to fit quite well some of the observed tilt precursors, producing viscosity and rigidity values very similar to those reported in literature.Professor Petr Viktorovich Manjgaladze died during the writing of this paper  相似文献   
7.
The main shock of the West-Bohemian earthquake swarm, Czechoslovakia, (magnitudem=4.5, depthh=10 km) exhibits an irregular areal distribution of macroseismic intensities 6° to 7° MSK-64. Four lobes of the 6° isoseismal are found and the maximum observed intensity is located at a distance of 8 km from the instrumentally determined epicentre. This distribution can be explained by the energy flux of the directS wave generated by a circular source, the hypocentral location and focal mechanism of which are taken from independent instrumental studies. The theoretical intensity, which is assumed to be logarithmically proportional to the integrated squared ground-motion velocity (i.e.,I=const+log v 2 (t)dt), fits the observed intensity with an overall root-mean-square error less than 0.5°. It is important that the present intensity data can also be equally well explained by the isotropic source. The fit was attained by means of a horizontally layered model though large fault zones and an extended sedimentary basin suggest a significant lateral heterogeneity of the epicentral region. The results encourage a broader application of the simple modelling technique used.  相似文献   
8.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   
9.
Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models.The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.  相似文献   
10.
The area of Serravalle, sited in the northern part of the town of Vittorio Veneto (TV), NE Italy, has been the target of a seismic microzonation campaign. 10 seismic stations have been deployed for a 7 months period to record in continuous mode. Three stations were installed on bedrock outcrops and seven on sedimentary sites with variable cover thickness. Spectral analyses have been performed on the collected data-set using the Generalized Inversion Technique (GIT, e.g. Andrews, 1986). In particular, spectral ratios have been calculated for each station relatively to the average of the three reference, bedrock sites. The spectral ratios provide quantitative estimates of the seismic motion amplifications which occur in each of the monitored sites. Two sites show high values of amplification, 5 times larger than signal amplitude at the reference sites, in correspondence of well discernible peak frequencies of 5 Hz. Results for the other stations show smaller amounts of site amplification spreading over a broad range of frequencies. Sites where the highest amplifications were recorded all lie on the left bank of the Meschio River and in areas farther away from its outlet into the plain correlating with the presence of thick layers of Quaternary deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号