首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10001篇
  免费   1139篇
  国内免费   583篇
工业技术   11723篇
  2024年   39篇
  2023年   242篇
  2022年   218篇
  2021年   319篇
  2020年   332篇
  2019年   293篇
  2018年   306篇
  2017年   351篇
  2016年   388篇
  2015年   392篇
  2014年   513篇
  2013年   770篇
  2012年   685篇
  2011年   685篇
  2010年   491篇
  2009年   539篇
  2008年   460篇
  2007年   584篇
  2006年   549篇
  2005年   478篇
  2004年   464篇
  2003年   367篇
  2002年   354篇
  2001年   299篇
  2000年   277篇
  1999年   239篇
  1998年   190篇
  1997年   152篇
  1996年   142篇
  1995年   121篇
  1994年   92篇
  1993年   86篇
  1992年   67篇
  1991年   35篇
  1990年   53篇
  1989年   41篇
  1988年   31篇
  1987年   12篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   4篇
  1982年   10篇
  1980年   2篇
  1964年   5篇
  1961年   3篇
  1960年   2篇
  1959年   3篇
  1954年   1篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
1.
2.
In this study, the effect of high-intensity ultrasound (HIUS) (200 and 400 W for 0, 5, 10 and 15 min respectively) on conformational changes, physicochemical, rheological and emulsifying properties of scallop (Patinopecten yessoensis) myofibrillar protein (SMP) was investigated. HIUS-treated SMP had lower α-helix content and higher β-sheet content compared with the native SMP. HIUS treatment induced the unfolding of SMP and increased the surface hydrophobicity. The particle size of SMP decreased and the absolute zeta-potential increased after ultrasonication, which in turn increased the solubility of SMP. The conformational changes and the improvement of physicochemical properties of SMP increased the ability for SMP to lower the interfacial tension at the oil–water interface and increased the percentage of adsorbed protein. As a result, the emulsifying properties, rheological properties of SMP and storage stability of emulsions were also improved. In conclusion, HIUS treatment has future potential for improving the emulsifying properties of SMP.  相似文献   
3.
在薄层复合膜(thin-film composite membrane, TFC膜)中引入无机纳米颗粒,形成薄层纳米复合膜(thin-film nanocomposite membrane, TFN膜),近几年作为反渗透膜开始应用于水处理研究。但是无机纳米颗粒在TFC膜中的性能的不稳定性和膜的机械强度等变成了突出问题。合成制备了粒径约为110 nm修饰羧基的介孔氧化硅球状纳米颗粒(MSN—COOH),并将其成功地化学键合在TFC膜的表面功能层交联网络中。与TFC膜相比,键合有MSN—COOH的TFN膜,水通量提高了56.2%,保持高脱盐率;由于单分散介孔纳米颗粒表面亲水官能团的引入,使膜表面的亲水性有很大程度提高,单分散介孔纳米颗粒在基体中的有序排列,使膜表面粗糙度降低,提高了膜的抗污染能力。与普通TFN膜相比较,具有更好的稳定性和柔韧性,可以在长时间高压过滤操作下保持稳定。  相似文献   
4.
《石油化工》2019,48(11):1157
采用不同类型的表面活性剂进行自发渗吸实验,并对表面活性剂改善岩石润湿性、降低界面张力的能力进行了分析。实验结果表明,阴离子型表面活性剂改善润湿性的能力好于其他类型的表面活性剂,且在岩心中的自发渗吸效果最好,这是由于阴离子型表面活性剂改善润湿性的机理为离子对形成机理,强于阳离子的吸附机理;接触角是决定渗吸能否发生的决定性因素,只有接触角小于70°时渗吸才能发生;界面张力影响渗吸速度和最终采出程度,对于渗透率为1 mD的岩心,最佳界面张力为10~(-1) mN/m。  相似文献   
5.
The uniaxial tension experiments are performed on thermoplastic polyurethane to investigate its mechanical behaviors and related potential mechanisms, and the loading strain rate is designing to be wide ranging from 0.0001 to 1 s−1. It is found that the polyurethane presents an obvious rate-dependence, and the stress strain curves share distinct strain hardening characteristics under the investigated strain rates. Furthermore, the strain hardening ratios are sharing nearly same trends and appear to be influenced by both strain rate and the induced adiabatic heating. Besides, the ratio is also strain-dependent on previous loading history. Then, a two-dimension unit cell model is built to investigate potential equivalent mechanisms, of which the hard phase as inclusion is equivalent with crystallization zone, crosslinking sites, and so forth. The simulation results facilitate to explain the distinct strain hardening ratios, even for the matrix from the extrapolated curves under super-low strain rate loading. Finally, the analogic mechanisms of equivalent hard inclusions are proposed, which can reasonably explain the strain rate- and strain-dependence characteristics of polyurethane mechanical behaviors.  相似文献   
6.
Liquid marble (LM) is a droplet that is wrapped by hydrophobic solid particles, which behave as a non-wetting soft solid. Based on these properties, LM can be applied in fluidics and soft device applications. A wide variety of functional particles have been synthesized to form functional LMs. However, the formation of multifunctional LMs by integrating several types of functional particles is challenging. Here, a general strategy for the flexible patterning of functional particles on droplet surfaces in a patchwork-like design is reported. It is shown that LMs can switch their macroscopic behavior between a stable and active state on super-repellent surfaces in situ by jamming/unjamming the surface particles. Active LMs hydrostatically coalesce to form a self-sorted particle pattern on the droplet surface. With the support of LM handling robotics, on-demand cyclic activation–manipulation–coalescence–stabilization protocols by LMs with different sizes and particle types result in the reliable design of multi-faced LMs. Based on this concept, a single bi-functional LM is designed from two mono-functional LMs as an advanced droplet carrier.  相似文献   
7.
The effects of diacylglycerols rich in medium‐ and long‐chain fatty acids (MLCD) on the crystallization of hydrogenated palm oil (HPO) and formation of 10% water‐in‐oil (W/O) emulsion are studied, and compared with the common surfactants monostearoylglycerol (MSG) and polyglycerol polyricinoleate (PGPR). Polarized light microscopy reveals that emulsions made with MLCD form crystals around dispersed water droplets and promotes HPO crystallization at the oil‐water interface. Similar behavior is also observed in MSG‐stabilized emulsions, but is absent from emulsions made with PGPR. The large deformation yield value of the test W/O emulsion is increased four‐fold versus those stabilized via PGPR due to interfacial crystallization of HPO. However, there are no large differences in droplet size, solid fat content (SFC), thermal behavior or polymorphism to account for these substantial changes, implying that the spatial distribution of the HPO crystals within the crystal network is the driving factor responsible for the observed textural differences. MLCD‐covered water droplets act as active fillers and interact with surrounding fat crystals to enhance the rigidity of emulsion. This study provides new insights regarding the use of MLCD in W/O emulsions as template for interfacial crystallization and the possibility of tailoring their large deformation behavior. Practical Applications: MLCD is applied in preparing W/O emulsion. It is found that MLCD forms unique interfacial Pickering crystals around water droplets, which promote the surface‐inactive HPO nucleation at the oil‐water interface. Thus MLCD‐covered water droplets act as active fillers and interact with surrounding fat crystals, which can greatly enhance the rigidity of emulsion. This observation would provide a theoretical reference and practical basis for the application of the MLCD with appreciable nutritional properties in lipid‐rich products such as whipped cream, shortenings margarine, butter and ice cream, so as to substitute hydrogenated oil. MLCD‐stabilized emulsions can also be explored for the development of novel confectionery products, lipsticks, or controlled release matrices.  相似文献   
8.
Over the last few years, the global biosurfactant market has raised due to the increasing awareness among consumers, for the use of biological or bio-based products. Because of their composition, it can be speculated that these are more biocompatible and more biodegradable than their chemical homologous. However, at the moment, no studies exist in the literature about the biodegradability of biosurfactants. In this work, a biosurfactant contained in a crude extract, obtained from a corn wet-milling industry stream that ferments spontaneously in the presence of lactic acid bacteria, was subjected to a biodegradation study, without addition of external microbial biomass, under different conditions of temperature (5–45 °C), biodegradation time (15–55 days), and pH (5–7). For that, a Box–Behnken factorial design was applied, which allowed to predict the percentage of biodegradation for the biosurfactant contained in the crude extract, between the range of the independent variables selected in the study, obtaining biodegradation values between 3 and 80%. The percentage of biodegradation for the biosurfactant was calculated based on the increase in the surface tension of samples of the crude extract. Furthermore, it was also possible to predict the variation in t1/2 for the biosurfactant (time to achieve the 50% of biodegradation) under different conditions.  相似文献   
9.
以钙系生料釉为基础,引入结晶剂CuO、MnO2制备无铅CuO-MnO2系金属光泽釉;结合XRD、SEM-EDS进行物相组成定性分析和显微结构表征,系统探究外加TiO2、V2O5以及玻璃粉对金属光泽釉釉面分相的影响。研究表明:一定量的TiO2、V2O5引入能有效促进釉面的分相,将玻璃粉部分替换基础釉中的钾长石能使得釉熔体的高温粘度降低,并进一步加剧釉面分相,促进CuMn2O4铜锰尖晶石在釉层表面的析出和富集;当TiO2引入量为2%,V2O5引入量为1%,玻璃粉引入量为25%(同为质量分数)时,金属光泽釉釉面效果最佳。  相似文献   
10.
Surfactant flooding has widely been used as one of the chemically enhanced oil recovery (EOR) techniques. Surfactants majorly influence the interfacial tension, γ, between oil and brine phase and control capillary number and relative permeability behavior and, thus, influence ultimate recovery. Additives, such as nanoparticles, are known to affect surfactant properties and are regarded as promising EOR agents. However, their detailed interactions with surfactants are not well understood. Thus, in this work, we examined the influence of silica nanoparticles on the ability of surfactants to lower γ and to increase viscosity at various temperatures and salinities. Results show that the presence of nanoparticles decreased γ between n-decane and various surfactant formulations by up to 20%. It was found that γ of nanoparticles–surfactant solutions passed through a minimum at 35 °C when salt was added. Furthermore, the viscosity of cationic surfactant solutions increased at specific salt (1.5 wt.%) and nanoparticle (0.05 wt.%) concentrations. Results illustrate that selected nanoparticles–surfactant formulations appear very promising for EOR as they can lower brine/n-decane interfacial tension and act as viscosity modifiers of the injected fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号