首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51746篇
  免费   5658篇
  国内免费   2322篇
工业技术   59726篇
  2024年   185篇
  2023年   1112篇
  2022年   1588篇
  2021年   1829篇
  2020年   1879篇
  2019年   1773篇
  2018年   1638篇
  2017年   1849篇
  2016年   1981篇
  2015年   1863篇
  2014年   2898篇
  2013年   3118篇
  2012年   3629篇
  2011年   4102篇
  2010年   3016篇
  2009年   3112篇
  2008年   2496篇
  2007年   3126篇
  2006年   3045篇
  2005年   2596篇
  2004年   2221篇
  2003年   1989篇
  2002年   1581篇
  2001年   1206篇
  2000年   1095篇
  1999年   863篇
  1998年   762篇
  1997年   538篇
  1996年   483篇
  1995年   392篇
  1994年   380篇
  1993年   260篇
  1992年   205篇
  1991年   176篇
  1990年   146篇
  1989年   81篇
  1988年   55篇
  1987年   62篇
  1986年   44篇
  1985年   84篇
  1984年   73篇
  1983年   62篇
  1982年   56篇
  1981年   12篇
  1980年   17篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1959年   5篇
  1951年   28篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Electrochemical hydrogenation is an environmentally favorable alternative to chemical reduction of indigo because it performs under ambient conditions using water as the donor of hydrogen. The purpose of this work is to fabricate electrocatalysts with high activity and durability for electrocatalytic hydrogenation of indigo. This work compares the performances of a series of Ni based catalysts (Ni, NiMo, NiP and NiMoP) on the substrate of carbon felt (CF) for electrolyzing water. Both the overpotential and Tafel slop are decreased as a function of the components as Ni > NiMo > NiP > NiMoP. Hence, NiMoP/CF shows the excellent performance based on the thermodynamics (η10 = 239 mV) and kinetics (Tafel slope = 89.7 mV·dec?1) for splitting water. Further, the electrode of NiMoP/CF was used for the electrocatalytic hydrogenation of indigo. The conversion efficiency and Faradic efficiency can be improved as 26.2% and 10.7% respectively. Furthermore, the dyeing behavior of the electrohydrogenated indigo is similar to that of conventional reduction methods. Thus, the present work offers foundational results and paves the way for the design of new catalytic materials for the reduction of vat dyes.  相似文献   
3.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
4.
针对芳香硝基化合物的催化选择性加氢反应,开发可替代贵金属催化剂的低成本、高效非贵金属催化剂,对于芳香胺类化合物的绿色生产具有重要意义。利用简易、可规模化的制备方法,以镍—2,5-吡啶二羧酸金属有机框架为前驱体,热解制备了氮掺杂石墨碳包覆镍纳米催化材料(Ni@CN)。采用X射线衍射、扫描电镜、透射电镜、元素分析、N2吸脱附等检测手段对Ni@CN的物化性质进行了表征,并对其催化性能进行了评价。结果表明,Ni@CN可在温和条件下(85℃,1.0 MPa H2)高效加氢含取代官能团的芳香硝基化合物生成对应的芳香胺类化合物。对比试验表明,镍纳米颗粒是Ni@CN的加氢活性中心,而石墨碳壳的存在有利于优先吸附硝基官能团。此外,进一步考察了Ni@CN的循环使用性能以及抗硫化物中毒的特性。  相似文献   
5.
《Ceramics International》2021,47(23):33070-33077
In this work, a number of precursors with 1:1 silicon to carbon atoms ratio and various carbon atom distributions were synthesized and pyrolyzed in order to obtain silicon oxycarbide based materials. The different carbon atom distributions were obtained using both simple monomers with only one silicon atom, as well as large monomers containing either four or sixteen silicon atoms with predefined carbon atom positions. The silicon oxycarbide based materials were investigated using IR, XRD, 29Si MAS NMR and elemental analysis after annealing at various temperatures, as well as TG. The research shows that carbon atom distribution has great impact on the structure of final material and can be used to tailor the material for its projected uses.  相似文献   
6.
With a growing interest in hydrogen as energy carrier, the efficient purification of hydrogen from gaseous mixtures is very important. This paper addresses the separation of hydrogen using Carbon Molecular Sieves Membranes (CMSM), which show an attractive combination of high permeability, selectivity and stability. Supported CMSM containing various amounts of aluminium have been prepared from novolac and aluminium acetyl acetonate (Al(acac)3) as carbon and alumina precursors. The thickness of the CMSM layers depend on the content of Al(acac)3 in the dipping solution, which also has influence in the pore size and pore size distribution of the membranes. The permeation properties of the membranes against the Al content in the membrane follows a volcano shape, where the membrane containing 4 wt (%) of Al(acac)3 has the best properties and was stable during 720 h for hydrogen at 150 °C and 6 bar pressure difference. All the CMSM have permeation properties well above the Robeson Upper limit.  相似文献   
7.
Ammonia generation was studied in the reaction between water and nitrogen-containing iron at 323 K and atmospheric pressure. Similar to metallic Fe, the interstitial compound Fe3N reduced water through Fe oxidation to produce hydrogen gas, while the N combined with atomic hydrogen to produce ammonia as a byproduct. The addition of carbon dioxide to this system accelerated the reaction with concomitant consumption of carbon dioxide. The promoted ammonia production upon addition of carbon dioxide can be attributed to the generation of atomic hydrogen from the redox reaction of carbonic acid and Fe, as well as removal of used Fe from the reaction system through the formation of a soluble carbonato complex. When carbonate was added to the reaction system, the production rates of ammonia and hydrogen increased further. The results here confirmed that ammonia can be synthesized from iron nitride under mild conditions by utilizing carbon dioxide.  相似文献   
8.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
9.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
10.
Titanium dioxide (TiO2) nanopowder (P-25;Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°,which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm-1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号