首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   31篇
  国内免费   23篇
工业技术   903篇
  2023年   22篇
  2022年   37篇
  2021年   39篇
  2020年   44篇
  2019年   49篇
  2018年   47篇
  2017年   45篇
  2016年   28篇
  2015年   23篇
  2014年   52篇
  2013年   58篇
  2012年   31篇
  2011年   45篇
  2010年   31篇
  2009年   35篇
  2008年   47篇
  2007年   41篇
  2006年   34篇
  2005年   24篇
  2004年   21篇
  2003年   19篇
  2002年   19篇
  2001年   13篇
  2000年   15篇
  1999年   12篇
  1998年   12篇
  1997年   4篇
  1996年   12篇
  1995年   8篇
  1994年   10篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
排序方式: 共有903条查询结果,搜索用时 31 毫秒
1.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
2.
In this work, we designed a magnetically-separable Fe3O4-rGO-ZnO ternary catalyst, ZnO anchored on the surface of reduced graphene oxide (rGO)-wrapped Fe3O4 magnetic nanoparticles, where rGO, as an effective interlayer, can enhance the synergistic effect between ZnO and Fe3O4. The effects of three operational parameters, namely irradiation time, hydrogen peroxide dosage, and the catalyst dosage, on the photo-Fenton degradation of methylene blue and methyl orange were investigated. The results showed that the Fe3O4-rGO-ZnO had great potential for the destruction of organic compounds from wastewater using the Fenton chemical oxidation method at neutral pH. Repeatability of the photocatalytic activity after 5 cycles showed only a tiny drop in the catalytic efficiency.  相似文献   
3.
NiO nanostructure was synthesized using a simple co-precipitation method and was embedded on reduced graphene oxide surface via ultrasonication. Structural investigations were made through X-ray diffraction (XRD) and functional groups were confirmed by Fourier transform infrared spectroscopy (FTIR). XRD analysis revealed the grain size reduction with doping. Fourier transform infrared spectroscopy confirmed the presence of metal-oxygen bond in pristine and doped NiO nanostructure as well as the presence of carbon containing groups. Scanning electron microscopy (SEM) indicated that the particle size decreased when NiO nanostructure was doped with copper. BET surface area was found to increase almost up to 43 m2/g for Cu doped NiO nanostructure/rGO composite. Current-voltage measurements were performed using two probe method. UV–Visible spectroscopic profiles showed the blue and red shift for Cu doped NiO nanostructure and Cu doped NiO Nanostructure/rGO composite respectively. Rate constant for Cu doped NiO nanostructure/rGO composite found to increase 4.4 times than pristine NiO nanostructure.  相似文献   
4.
《Advanced Powder Technology》2020,31(12):4585-4597
Focussing on visible light active ferrites for high performance removal of noxious pollutants, we report the synthesis of Mg0.5NixZn0.5-xFe2O4 (x = 0.1, 0.2, 0.3, 0.4, & 0.5) ferrite nanoparticle for degradation of reactive blue-19 (RB-19). Lattice parameters calculated using intense X-ray diffraction (XRD) peaks and Nelson-Riley plots (N-R plot) are in well agreement with each other. The sample Mg0.5Ni0.4Zn0.1Fe2O4 (M5N4) exhibits best performance with 99.5% RB-19 degradation in 90 min under visible light. Photoluminescence (PL) results confirm that recombination of charge carriers is highly reduced in the photocatalyst. Scavenging experiments suggest that O2 radicals were the dominant species responsible for photocatalytic performance. The photocatalytic mechanism was explained in terms of dopant driven shifting of conduction bands and valence bands (calculated by Mott-Schottky plots). The thermodynamic probability of radical generation along with role of redox cycles of metal ions has been discussed in the mechanism. The dye degradation was ascertained by detection of intermediates via mass spectrometry analysis and a possible degradation route was also predicted. The findings in this work provide intriguing opportunities to modify the electronic band structure of spinel ferrites for visible and solar light photocatalytic activity for environmental detoxification.  相似文献   
5.
《Ceramics International》2020,46(10):15925-15934
Herein, reduced graphene oxide/cobalt-zinc ferrite (RGO/Co0.5Zn0.5Fe2O4) hybrid nanocomposites were fabricated by a facile hydrothermal strategy. Results revealed that the contents of RGO could affect the micromorphology, electromagnetic parameters and electromagnetic wave absorption properties. As the contents of RGO increased in the as-synthesized hybrid nanocomposites, the dispersibility of the particles was improved. Meanwhile, numerously ferromagnetic Co0.5Zn0.5Fe2O4 particles were evenly anchored on the wrinkled surfaces of flaky RGO. Besides, the obtained hybrid nanocomposites exhibited superior electromagnetic absorption in both X and Ku bands, which was achieved by adjusting the RGO contents and matching thicknesses. Significantly, when the content of RGO was 7.4 wt%, the binary nanocomposites showed the optimal reflection loss of -73.9 dB at a thickness of 2.2 mm and broadest effective absorption bandwidth of 6.0 GHz (12.0–18.0 GHz) at a thin thickness of merely 2.0 mm. The enhanced electromagnetic absorption performance was primarily attributed to the multiple polarization effects, improved conduction loss caused by electron migration, and magnetic loss derived from ferromagnetic Co0.5Zn0.5Fe2O4 nanoparticles. Our results could provide inspiration for manufacturing graphene-based hybrid nanocomposites as high-efficient electromagnetic wave absorbers.  相似文献   
6.
《Ceramics International》2020,46(10):16480-16492
Transition metal oxide nanoparticles (CuO, ZnO & Fe2O3) and mixed metal oxides CuO. ZnO.Fe2O3 were fabricated by facile co-precipitation approach for photocatalytic treatment of organic dyes. The structural features, phase purity, crystallite size and morphology of individual and mixed metal oxides were analysed by X-rays diffraction patterns (XRD) and scanning electron microscopic (SEM) analysis. Electrical behaviour of CuO, ZnO, Fe2O3 and mixed metal oxides CuO. ZnO.Fe2O3 was explored by current-voltage (I-V) measurements. Functional groups present in the synthesized metal oxides were investigated by Fourier transform infrared spectroscopy (FTIR) which ensures the existence of M-O functional groups in the samples. The optical bandgap analysis was carried out by UV–visible spectroscopic technique which revealed that the blend of three different transition metal oxides reduced the bandgap energy of mixed metal oxides. The reason behind this reduced bandgap energy is formation of new electronic state which arises due to the metal-oxygen interactions. Moreover, the nanocomposites of CuO.ZnO.Fe2O3 with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) were prepared to study the effect of the carbonaceous materials on the rate of photodegradation. These carbonaceous nanomaterials have plethora properties which can bring advancement in sector of photocatalytic treatment of wastewater. The photocatalytic experiments were performed using methylene blue (MB) as standard dye for comparative study of metal oxides and their composites with rGO and CNTs. The percentage degradation of methylene blue (MB) by nanocomposite CuO.ZnO.Fe2O3/rGO is 87% which is prominent among all samples. This result ascribed the photocatalytic aspects of reduced graphene oxide along with mixed metal oxides.  相似文献   
7.
Magnetic characterization has been performed on the members of the cuprateniobate RBa2Cu2NbO8 (R = Pr, Nd, and La) series and R1.5Ce0.5Sr2Cu2NbO10 (R = Pr, Eu, Nd, and Sm) series. The PrBCNO samples show a signature in the magnetization of a magnetic ordering at 12K. The PrCSCNO sample is nonsuperconducting and shows two distinct orderings at 17K and 53K. No such magnetic phase transition is observed down to 2K in the Nd and La based RBCNO materials or the Nd, Sm, and Eu based RCSCNO materials. Measurements of the lower critical field curve, dc irreversibility line, and critical curent densities are reported for each of the superconducting NdCSCNO, SmCSCNO, and EuCSCNO compounds.  相似文献   
8.
Thermal history and solute precipitation behavior of suspended solution droplets of sodium chloride (NaCl), magnesium sulphate (MgSO4), and zirconium hydroxychloride (ZrO(OH)Cl) evaporating at atmospheric and reduced pressures are studied. Experimental measurements on the variation of droplet diameter, solution concentration, and temperature during the evaporation period are presented and discussed. The results of solute precipitation behavior in solution droplets observed under an optical microscope are displayed and discussed. Results indicate that reducing the pressure (∼ 33 kPa) results in a change in the solution droplet evaporation rate, but the thermal histories of a particular solution droplet are similar at the atmospheric and reduced pressures. At atmospheric and reduced pressures used in this study, the d2 law for solution droplets is valid at early stages of the evaporation and before the solute precipitation initiates. Drying of MgSO4 and ZrO(OH)Cl solution droplets results in the formation of spherical particles, whereas drying of spherical NaCl solution droplets results in the formation of cubic particles.  相似文献   
9.
J. Chen   《低温学》1994,34(12)
The influence of irreversibility of finite-rate heat transfer on the performance of an absorption refrigerator is investigated using an endoreversible cycle model with continuous flow. The cooling rate is adopted as an objective function for refrigerator optimization. The maximum cooling rate and the corresponding coefficient of performance are derived. The optimal performance with respect to heat transfer areas of the refrigerator is analysed. In addition, certain significant conclusions are reached.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号