首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12591篇
  免费   1705篇
  国内免费   736篇
工业技术   15032篇
  2024年   26篇
  2023年   176篇
  2022年   263篇
  2021年   359篇
  2020年   416篇
  2019年   366篇
  2018年   396篇
  2017年   514篇
  2016年   517篇
  2015年   519篇
  2014年   724篇
  2013年   741篇
  2012年   861篇
  2011年   940篇
  2010年   682篇
  2009年   791篇
  2008年   701篇
  2007年   898篇
  2006年   802篇
  2005年   713篇
  2004年   573篇
  2003年   518篇
  2002年   400篇
  2001年   380篇
  2000年   332篇
  1999年   273篇
  1998年   251篇
  1997年   149篇
  1996年   174篇
  1995年   117篇
  1994年   97篇
  1993年   85篇
  1992年   80篇
  1991年   57篇
  1990年   25篇
  1989年   38篇
  1988年   27篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
2.
Abstract

Ba0.95Ca0.05Ti1-xZrxO3 (BCTZO) ceramics were prepared by a solid state reaction method. The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray absorption near edge structure (XANES). The ceramics exhibit a pure perovskite structure. The average grain size gradually decreases with increasing Zr concentration. XANES results indicate that the intensities of pre-edge peaks dropped with increasing Zr concentration. The BCTZO ceramic of x?=?0.05 has the optimum electrical properties with the maximum dielectric constant (ε'm), remanent polarization (2Pr), coercive electric field (2Ec) and piezoelectric charge constant (d33) of 7,244, 12.54 (μC/cm2), 5.29 (kV/cm) and 288 (pC/N), respectively.  相似文献   
3.
In continuation to my previous work (Guha S. AIChE J. 2013;59(4):1390-1399), in this work, effects of ionic migration are evaluated for disk region of a rotating ring disk electrode system by numerically solving complex differential equations, developed for mass transfer along with kinetic complication in presence of ionic migration under limiting current condition. The system for simulation is 0.01 M Fe2(SO4)3 solution with H2SO4 as supporting electrolyte. Simulation cases are presence and absence of ionic migration with kinetic complication (oxidation of Fe2+ to Fe3+ under O2 pressure). Results show that concentration boundary layer thickness of reactant Fe3+ reduces appreciably and steady-state disk current reduces substantially in presence of migration. Simulated steady-state disk current in absence of migration case agrees well with published data. Results indicate higher Fe2+ concentration in presence of migration and thereby higher rate of oxidation of Fe2+ to Fe3+ at all rate constant values.  相似文献   
4.
本文介绍了混凝土结构的压电体波和表面波检测的主要进展,对两种压电声波检测的优缺点进行了总结。体波检测设备一般埋入混凝土内部,需要选择合理的检测部位,检测结果较为精确;声表面波检测无需选择特定的部位,但是检测深度有限。在实际检测工作过程中,可以联合两种方法相互验证。  相似文献   
5.
We model developable surfaces by wrapping a planar figure around cones and cylinders. Complicated developables can be constructed by successive mappings using cones and cylinders of different sizes and shapes. We also propose an intuitive control mechanism, which allows a user to select an arbitrary point on the planar figure and move it to a new position. Numerical techniques are then used to find a cone or cylinder that produces the required mapping. Several examples demonstrate the effectiveness of our technique.  相似文献   
6.
Thermal bending analysis of doubly curved laminated shell panels with general boundary conditions and laminations is presented. The equations of equilibrium are derived in the form of two coupled sets of ordinary differential equations based on a general shell theory and solved through the state-space approach in a repeated manner. It is depicted that the results of the present method are in great agreement with analytical solutions. Cylindrical shell panels with general boundary conditions and laminations, where no analytical solution is available, are solved. It is found that the present method exhibits a high convergence rate as well as presenting accurate results in all cases.  相似文献   
7.
In this study, lead-free (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 compositions are synthesized via conventional solid oxide route, and the ceramics are fabricated with normal sintering in air. The effects of composition fluctuations on dielectric, piezoelectric, and mechanical properties are investigated. The phase structure and the microstructure are analyzed with X-ray diffraction and scanning electron microscopy. The best dielectric and piezoelectric properties of εr = 11 207 and d33 = 330 pC/N were obtained for BZT−0.35BCT and BZT−0.5BCT ceramics, respectively. The mechanical behavior—in terms of Vickers hardness and compressive and flexural strengths—was investigated, and the best mechanical behavior was found in the vicinity of the phase transition boundary with x values between 0.5 and 0.6.  相似文献   
8.
《Ceramics International》2020,46(3):2868-2876
In order to improve the stability of PZT-based sensors, the mechanical, dielectric, ferroelectric and piezoelectric properties of PZT-5H under impact load were studied experimentally by using the separated Hopkinson pressure bar (SHPB) with an electrical output measurement device. At the same time, the experimental study on the material properties of PZT-5H before and after the impact was carried out. The effect of impact cracks on the output voltage of PZT-5H was also analyzed. The results show that the dynamic piezoelectric constants of PZT-5H under low stress impact (10–50 MPa) are different from those under quasi-static state, and the empirical relationship between them and the peak stress is obtained through experiments. The dielectric properties of PZT-5H did not change under low stress impact, but micro-cracks occurred in the material and dielectric loss increased at high frequencies. Under short circuit, the residual polarization intensity of PZT-5H decreases sharply due to impact load. While the impact load causes the secondary polarization and the increase of the residual polarization intensity of PZT under open circuit. When the stress is over 45 MPa, the PZT-5H breaks. The formation of cracks causes abnormal discharge voltage and gap discharge.  相似文献   
9.
Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives: (1) knowing the bulging behavior of a Cu clad tri-layered steel sheet as a function of forming conditions, and (2) analyzing the bending effect on bulging in an attempt to identify the associated mechanism. A series of ISF tests and bending analysis are performed to realize these objectives. From the cause-effect analysis, it is found that bulge formation in the layered sheet is sensitive to forming conditions in a way that bulging can be minimized utilizing annealed material and performing ISF with larger tool diameter and step size. The bending under tension analysis reveals that the formation of bulge is an outgrowth of bending moment that the forming tool applies on the sheet during ISF. Furthermore, the magnitude of bending moment depending upon the forming conditions varies from 0.046 to 10.24 N·m/m and causes a corresponding change in the mean bulge height from 0.07 to 0.91 mm. The bending moment governs bulging in layered sheet through a linear law. These findings lead to a conclusion that the bulge defect can be overcome by controlling the bending moment and the formula proposed can be helpful in this regards.  相似文献   
10.
The xBiFeO3-(1-x)Ba(Zr0.02Ti0.98)O3 + 1.0 mol% MnO2 (xBF-BZT) lead-free piezoelectric ceramics were prepared by conventional solid-state reaction method. The structure, dielectric, and piezoelectric properties were studied. X-ray diffraction (XRD) analysis showed that xBF-BZT ceramics exhibited pure perovskite structure with the coexistence of tetragonal and rhombohedral phases (0.66 ≤ x ≤ 0.74). The Curie temperature Tc, the dielectric constant εr (1 kHz), dielectric loss tanδ (1 kHz), piezoelectric constant d33, coercive field Ec (80 kV/cm), and remnant polarization Pr (80 kV/cm) of 0.7BF-0.3BZT-Mn ceramics were 491°C, 633, 0.044, 165 pC/N, 35.6 kV/cm, and 22.6 μC/cm2, respectively. The unipolar strain of 0.7BF-0.3BZT reached up to 0.20% under the electric field of 60 kV/cm, which is larger than that (0.15%) of BiFeO3–BaTiO3 ceramics. These results indicated that the xBF-BZT ceramics were promising candidates for high-temperature piezoelectric materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号