首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   1篇
工业技术   20篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system.  相似文献   
2.
3.
测定鸡血清丁酰胆碱酯酶(butyrylcholinesterase,BChE)对农药的敏感性,为农药残留快速检测提供新的敏感酶源。本文以马血清丁酰胆碱酯酶为对照,以碘化硫代丁酰胆碱为底物,采用Ellman法,研究了鸡血清丁酰胆碱酯酶的酶学性质及其对有机磷和氨基甲酸酯类农药的敏感性,计算相关半抑制浓度(half-inhibitory concentration,IC50)。结果表明,两种BChE在35℃、pH 8.0时达到最佳的反应活性,无底物抑制效应,对毒扁豆碱敏感,对盐酸多奈哌齐相对不敏感;鸡血清BChE对敌百虫、克百威、灭多威、速灭威、敌敌畏的IC50值分别为0.77、31.99、1.14、5.49、0.95μmol/L;马血清BChE对这五种农药的IC50值分别为3.88、1.22、22.58、24.18、5.46μmol/L。除克百威外,鸡血清BChE对供试农药的敏感性均高于马血清BChE。因此,鸡血清BChE具有较好的农药敏感性,可以作为农药残留快速检测的候选酶源。  相似文献   
4.
We investigated the metabolic profile and biological activities of the essential oil and polar extracts of Lavandula pedunculata subsp. lusitanica (Chaytor) Franco collected in south Portugal. Gas chromatography–mass spectrometry (GC–MS) analysis revealed that oxygen-containing monoterpenes was the principal group of compounds identified in the essential oil. Camphor (40.6%) and fenchone (38.0%) were found as the major constituents. High-performance liquid chromatography with diode array detection (HPLC–DAD) analysis allowed the identification of hydroxycinnamic acids (3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and rosmarinic acids) and flavones (luteolin and apigenin) in the polar extracts, with rosmarinic acid being the main compound in most of them. The bioactive compounds from L. pedunculata polar extracts were the most efficient free-radical scavengers, Fe2+ chelators and inhibitors of malondialdehyde production, while the essential oil was the most active against acetylcholinesterase. Our results reveal that the subspecies of L. pedunculata studied is a potential source of active metabolites with a positive effect on human health.  相似文献   
5.
6.
7.
鸭肝丁酰胆碱酯酶的纯化与酶学性质研究   总被引:1,自引:0,他引:1  
目的:获得鸭肝丁酰胆碱酯酶纯品并对其酶学性质进行研究。方法:采用丙酮脱脂、酸沉淀、硫酸铵分级沉淀、DEAE-Sepharose阴离子交换层析和Sephacryl S-200凝胶层析方法,分离纯化鸭肝丁酰胆碱酯酶;采用SDS-聚丙烯酰胺凝胶电泳法进行纯度鉴定和酶相对分子量测定。结果:从鸭肝中分离纯化获得电泳纯的丁酰胆碱酯酶,纯化倍数为156.45倍,酶活回收率为23.60%,比活达17.21U/mg。酶相对分子量为388.85kDa,亚基相对分子量为64.70kDa。推测该酶由六个相同亚基构成。该酶最大紫外吸收为278nm。酶催化碘化硫代丁酰胆碱水解的最适pH为8.0,最适温度为35℃。该酶在pH3.0~10.0区域较稳定;在40℃以下处理1h,酶活力保持稳定。Zn2+、Mn2+和Cu2+对该酶具有显著的抑制作用。以碘化丁酰硫代胆碱为底物,测定该酶的表观Km为71.15μmol/L,没有过量底物抑制现象。结论:成功分离纯化获得丁酰胆碱酯酶,该酶具有较好的酸碱耐受性。  相似文献   
8.
The chemical profiles of bioactive essential oil and extracts obtained by hydrodistillation (HD) and supercritical fluid extraction (SFE), respectively, from Lavandula viridis were compared. The SFE was performed at 40 °C and at extraction pressures of 12 or 18 MPa in two different separators. Evaluation of the essential oil and SFE extracts by GC–FID and GC–IT–MS revealed that oxygen-containing monoterpenes were the major constituents in both cases, but there were important differences between the chemical profiles produced by the different extraction techniques. More compounds were isolated by HD but higher yields were achieved by SFE. Camphor was the main component identified in the essential oil (31.59 ± 1.32%), and in extracts from the first (1.61 ± 0.34%) and second SFE separators (22.48 ± 1.49%) at 12 MPa. In contrast, the first separator SFE extract at 18 MPa (heavy compounds) was dominated by myrtenol (5.38 ± 2.04%) and camphor (4.81 ± 1.93%), whereas the second separator SFE extract (volatiles) was dominated by verbenone (13.97 ± 5.27%). The essential oil and heavy compound extracts from the first separator possessed antioxidant and anti-cholinesterase activities. Our data show that phytochemicals from the aerial parts of L. viridis could be developed as natural antioxidant and anti-cholinesterase drugs, with particular applications in the symptomatic treatment of Alzheimer’s disease.  相似文献   
9.
We have evaluated in vitro the potency of 23 oximes to reactivate human erythrocyte acetylcholinesterase (AChE) and plasma butyrylcholinesterase (BChE) inhibited by racemic leptophos-oxon (O-[4-bromo-2,5-dichlorophenyl]-O-methyl phenyl-phosphonate), a toxic metabolite of the pesticide leptophos. Compounds were assayed in concentrations of 10 and 100 μM. In case of leptophos-oxon inhibited AChE, the best reactivation potency was achieved with methoxime, trimedoxime, obidoxime and oxime K027. The most potent reactivators of inhibited BChE were K033, obidoxime, K117, bis-3-PA, K075, K074 and K127. The reactivation efficacy of tested oximes was lower in case of leptophos-oxon inhibited BChE.  相似文献   
10.
Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE) and/or, butyrylcholinesterase (BChE), the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 μmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号