首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9799篇
  免费   616篇
  国内免费   313篇
工业技术   10728篇
  2024年   24篇
  2023年   130篇
  2022年   219篇
  2021年   266篇
  2020年   326篇
  2019年   231篇
  2018年   239篇
  2017年   360篇
  2016年   340篇
  2015年   352篇
  2014年   568篇
  2013年   580篇
  2012年   685篇
  2011年   724篇
  2010年   513篇
  2009年   502篇
  2008年   459篇
  2007年   620篇
  2006年   573篇
  2005年   452篇
  2004年   417篇
  2003年   390篇
  2002年   374篇
  2001年   272篇
  2000年   262篇
  1999年   199篇
  1998年   141篇
  1997年   111篇
  1996年   77篇
  1995年   56篇
  1994年   56篇
  1993年   43篇
  1992年   32篇
  1991年   28篇
  1990年   24篇
  1989年   17篇
  1988年   14篇
  1987年   15篇
  1986年   11篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
2.
This study investigated the inhibitory effects of curcumin and piperine on fluorescent advanced glycation end products (fAGEs) formation in a bovine serum albumin (BSA)–fructose model. Model systems of BSA and fructose were prepared, and curcumin or piperine was added. fAGEs and BSA oxidation product (dityrosine, kynurenine and N'-formylkynurenine) contents were determined. The results showed that fAGEs content decreased with increasing concentration of curcumin and piperine (P < 0.05). Addition of curcumin and piperine at 160 µg mL−1 could inhibit fluorescent AGEs by 100% and 93% respectively. Dityrosine and N'-formylkynurenine contents decreased as curcumin and piperine concentration increased (P < 0.05). Furthermore, the result of principal component analysis indicated that curcumin and piperine markedly impeded BSA oxidation, resulting in a lower level of fAGEs in model systems. Therefore, adding curcumin and piperine may facilitate reduced fAGEs levels in BSA–fructose model.  相似文献   
3.
A standard method for the extraction of tiger nut milk has been introduced. It has been shown that, although milling duration improves the yield of tiger nut milk solids and its nutrient composition, there is a quantifiable loss of nutrient in the pressing residue during milk extraction. Milling duration improved the colloidal stability of the milk against creaming during 16 h of storage. A higher milling intensity resulted in the aggregation of biological polymers which resulted in colloidal destabilisation. Milling improved the lightness and stability and reduced browning rate of the tiger nut milk during storage. This report is important for the production of tiger nut milk of consistent and comparable characteristics. Milling has been introduced as a processing method for the qualitative and quantitative modulation of the properties of tiger nut milk. It is recommended to develop further strategies to improve the colloidal stability of tiger nut milk as a beverage.  相似文献   
4.
Dietary advanced glycation end products (dAGEs) are complex and heterogeneous compounds derived from nonenzymatic glycation reactions during industrial processing and home cooking. There is mounting evidence showing that dAGEs are closely associated with various chronic diseases, where the absorbed dAGEs fuel the biological AGEs pool to exhibit noxious effects on human health. Currently, due to the uncertain bioavailability and rapid renal clearance of dAGEs, the relationship between dAGEs and biological AGEs remains debatable. In this review, we provide the most updated information on dAGEs including their generation in processed foods, analytical and characterization techniques, metabolic fates, interaction with AGE receptors, implications on human health and reducing strategies. Available evidence demonstrating a relevance between dAGEs and food allergy is also included. AGEs are ubiquitous in foods and their contents largely depend on the reactivity of carbonyl and amino groups, along with surrounding condition mainly pH and heating procedures. Once being digested and absorbed into the circulation, two separate pathways can be involved in the deleterious effects of dAGEs: an AGE receptor‐dependent way to stimulate cell signals, and an AGE receptor‐independent way to dysregulate proteins via forming complexes. Inhibition of AGEs formation during food processing and reduction in the diet are two potent approaches to restrict health‐hazardous dAGEs. To elucidate the biological role of dAGEs toward human health, the following significant perspectives are raised: molecular size and complexity of dAGEs; interactions between unabsorbed dAGEs and gut microbiota; and roles played by concomitant compounds in the heat‐processed foods.  相似文献   
5.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
6.
7.
The consequences of high energy mechanical milling, microwave-assisted heating and rapid thermal cooling on magnetic ordering in polycrystalline CaCu3Ti4O12 cubic perovskite have been investigated by means of X-ray powder diffractometry (300?K), dc magnetization in field – cooled and zero – field cooled modes (H = 100?Oe and 1000?Oe, T?=?5–300?K) (MT curves) and MH loop characteristics (T?=?5?K and 300?K, Hmax = 70?kOe). The MT curves of unmilled and 16?h milled samples show pure antiferromagnetic and weak ferromagnetic ordering, respectively, 1?h and 6?h milled samples demonstrate the coexistence of both the phases while microwave-assisted and quenched samples exhibit classic antiferromagnetic transition and a low temperature paramagnetic–like contribution with different weights, well supported by the MH loop characteristics. The observed transformations in the magnetic ordering are attributed to the ball-milling induced stress which curtails hybridization of empty Ti-3d orbitals with Cu-3d and O-2p orbitals and secondary phase formation. Oxygen vacancies associated with bound magnetic polarons originate ferromagnetism in the milled samples while unpaired electrons inhabited at the empty sites are the cause of paramagnetic centers. The low-temperature Curie – tail in MT curve for quenched and microwave assisted samples is attributed to Ti3+ cations.  相似文献   
8.
Optimization of tool path planning using metaheuristic algorithms such as ant colony systems (ACS) and particle swarm optimization (PSO) provides a feasible approach to reduce geometrical machining errors in 5-axis flank machining of ruled surfaces. The optimal solutions of these algorithms exhibit an unsatisfactory quality in a high-dimensional search space. In this study, various algorithms derived from the electromagnetism-like mechanism (EM) were applied. The test results of representative surfaces showed that all EM-based methods yield more effective optimal solutions than does PSO, despite a longer search time. A new EM-MSS (electromagnetism-like mechanism with move solution screening) algorithm produces the most favorable results by ensuring the continuous improvement of new searches. Incorporating an SPSA (simultaneous perturbation stochastic approximation) technique further improves the search results with effective initial solutions. This work enhances the practical values of tool path planning by providing a satisfactory machining quality.  相似文献   
9.
B4C-TiB2-SiC composites were fabricated via hot pressing using ball milled B4C, TiB2, and SiC powder mixtures as the starting materials. The impact of ball milling on the densification behaviors, mechanical properties, and microstructures of the ceramic composites were investigated. The results showed that the refinement of the powder mixtures and the removal of the oxide impurities played an important role in the improvement of densification and properties. Moreover, the formation of the liquid phases during the sintering was deemed beneficial for densification. The typical values of relative density, hardness, bending strength, and fracture toughness of the composites reached 99.20%, 32.84?GPa, 858?MPa and 8.21?MPa?m1/2, respectively. Crack deflection, crack bridging, crack branching, and microcracking were considered to be the potential toughening mechanisms in the composites. Furthermore, numerous nano-sized intergranular/intragranular phases and twin structures were observed in the B4C-TiB2-SiC composite.  相似文献   
10.
《Ceramics International》2020,46(17):26760-26766
It is well known that graphene nanosheets (GNSs) have many excellent properties. However, it has been a difficult thing to exfoliate graphite into GNSs in a controllable and scalable manner. In this research, a new strategy named xylitol-assisted ball milling exfoliation (XABME) was developed for the scalable preparation of GNSs. The experimental results characterized by a series of measurements showed that GNSs were successfully exfoliated by the XABME strategy. The structure of the prepared nanosheets was featured by large lateral size and ultra-small thickness. Furthermore, the prepared GNSs easily achieved high production yield (≈54%). Lastly, the as-obtained GNSs and cellulose nanofibers (CNF) were compounded to form some nanomaterial films. The prepared films exhibited excellent flexibility and higher thermal conductivity, with the in-plane thermal conductivity of 90 wt% GNS film (8.0 W/(m·K)) being 11.4 times higher than that of the film without GNSs. This shows that GNSs could effectively enhance the thermal conductivity of the CNF matrix and indicate that these prepared films have great potentials in the thermal management of portable mobile devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号