首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
工业技术   20篇
  2021年   3篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1994年   1篇
  1992年   1篇
  1985年   2篇
  1982年   3篇
  1980年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Hydrogasification of a bituminous and a brown coal was carried out at 1273 K in the presence of nickel catalyst. The action of the catalyst during gasification was investigated using a scanning electron microscope. Contrary to what is found with steam gasification, most of the catalyst particles were spherical, due to the higher temperature. Some particles made pits and disappeared into the char matrix and others agglomerated with each other increasing the diameter of the particles significantly. Although the action of the catalyst on a brown coal was essentially similar to that on a bituminous coal, the catalyst was more homogeneously distributed over the char surface from the brown coal.  相似文献   
2.
The chemistry of the formation of methane in hydrogasification of such aromatics with heteroatoms as diphenylenoxide, diphenylensulphide, quinoline, phenol, 1-naphthol and benzole acid was studied using a flow tube. Temperatures varied between 700 and 1000 °C. Gases and benzene were analysed by on-line gas chromatography, the tar products being analysed by mass spectrometry. Heterocyclic-bound nitrogen and oxygen directly attached to the aromatic system both facilitate ring cleavage, whereby nitrogen is eliminated as ammonia and oxygen as carbon monoxide. For phenolic hydroxyl groups the temperature of dehydroxylation must exceed 800 °C using rapid heating. These processes result in high methane yields. Heterocyclic-bound sulphur does not effect ring cleavage and methane formation.  相似文献   
3.
The chemistry of the formation of methane in hydrogasification of such methyl-substituted and methylene-bridged aromatics as toluene, 1- and 2-methylnaphthalene, diphenylmethane, fluorene and 9,10-dihydroanthracene was studied using a flow tube. Temperatures varied between 600 and 1000 °C. Gases and benzene were analysed by on-line gas chromatography, the tar products being analysed by mass spectrometry. Methane formation from aliphatic groups, not in cyclic systems, is decisively favoured compared with the formation from aromatic rings. The splitting off of aliphatic groups does not influence cleavage of attached aromatic rings. Splitting off of hydrogen from the aliphatic groups weakens aromatic rings. This primary step is important for methylene bridges in five membered rings only.  相似文献   
4.
综合运用化学平衡和热力学平衡对于给定煤种的加氢气化反应建立了通用的热力学数学模型。用于预测气化炉出口的煤气成分、产量等。并利用该模型计算分析了煤加氢气化直接生成CH4的过程,主要分析了反应温度及压力对加氢气化反应的平衡常数和平衡转化率的影响。用化学动力学方法建立数学模型,通过计算获得主要气体产物与反应温度和压力之间的关系,以及气化过程中氢气系数对最终气体产物的影响。  相似文献   
5.
The in-situ removal of CO2 and the increase of the energetic gas yield, including hydrogen and methane, by sorption enhanced steam hydrogasification (SE-SHR) process were investigated. Lignite was used in this study as the feedstock to the steam hydrogasification reaction (SHR) with the addition of calcined dolomite as a sorbent. CO2 was reduced dramatically with the introduction of the sorbent into the reactor. The production of hydrogen and methane was increased simultaneously. The hydrogen yield was increased by 60% when the calcium oxide to carbon molar ratio was increased to 0.86 as compared to the results without the sorbent. The hydrogen in the product gas was sufficient to maintain a self-sustained supply back to the SHR when the calcium oxide to carbon molar ratio was over 0.29. The performance of the SE-SHR was determined at different temperatures ranging from 650 °C to 800 °C and at different steam to carbon molar ratios. Additionally, the char conversion was also enhanced in all cases with the sorbent introduction. The synthesis gas production using SE-SHR coupled with steam methane reforming was also modeled by Aspen Plus. The simulation results showed that the H2/CO ratio of the synthesis gas generated based on SE-SHR process was 6 with higher overall energy efficiency of 74.5%. Summarily, the main findings of this study were that the overall performance of the SE-SHR was substantially improved compared to the conventional operation of the SHR and the quality of synthesis gas produced based on SE-SHR process was more flexible for the downstream processing.  相似文献   
6.
煤加氢气化制天然气技术具有工艺路径短、热效率高等优点,其应用基础研究备受关注。但煤中存在部分致密的芳香碳结构,加氢反应性较差,即使在苛刻的反应条件下(~1 000℃、~7 MPa H_2),仍难以转化。通过引入催化剂,进行煤催化加氢气化可在温和的反应条件下实现煤的碳转化率和CH_4收率的同步提高。论述了碱金属(K、Na等)、碱土金属(Ca)和过渡金属(Fe、Co、Ni等)催化剂对模型碳加氢气化的催化作用原理。探讨了反应温度、氢气压力、和碳结构对C-H_2催化反应的影响规律,分析了适用于原煤催化加氢气化的最佳催化剂及工艺条件,并从CH_4和轻质液体焦油等产物生成规律、煤中碳结构随着反应进行的衍变过程等角度,讨论了催化剂分别对煤加氢热解和热解半焦加氢气化的催化作用行为。提出了煤催化加氢气化联产CH_4和轻质液体焦油技术从基础走向应用的进一步研究建议。现有研究结果表明,过渡金属与碱土金属组成的二元催化剂(Fe/Co/Ni-Ca)对煤加氢气化的活性较高。过渡金属元素在反应过程中主要提供C-H_2反应所需的活性氢,并削弱C—C键的键能;碱土金属元素Ca主要促进Fe/Co/Ni的分散,防止其发生硫中毒失活,并增强Fe/Co/Ni与碳之间的相互作用。温度升高一方面为化学键断裂过程提供了更高能量,加速C-H_2反应,另一方面促进催化剂在煤结构中扩散,提升催化剂的供氢和断键效率。升高压力促进了活性氢的供应,同时CH_4浓度得到稀释,反应向生成CH_4的方向移动。以5%Co-1%Ca为催化剂,在850℃、3 MPa H_2反应条件下,30 min内可同时达到90.0%的碳转化率和77.3%的CH_4收率。Co-Ca催化剂在煤加氢热解过程中具有催化解聚和催化加氢的作用,提高焦油和CH_4收率,同时催化剂在煤加氢热解过程中对煤结构产生催化活化作用,使得生成的半焦具有较高的气化活性。煤催化加氢气化的机理研究目前仍处于推测阶段,另外,该技术气化剂、煤种的适应性,催化剂循环利用性能有待进一步阐明。  相似文献   
7.
Murakami  Kenji  Arai  Masahiko  Shirai  Masayuki 《Topics in Catalysis》2002,18(1-2):119-123
The catalysis and structure of nickel species supported on Loy Yang brown coal during coal conversion processes were studied. The gas evolution profile from the nickel-loaded coals depends on the amount of nickel loaded. The evolution of carbon monoxide was promoted when small nickel metal particles were formed during pyrolysis. Methane was selectively formed on large nickel metal particles during hydrogasification.  相似文献   
8.
Coal use for electricity generation will continue growing in importance. In the present work the optimization of a high efficiency and zero emissions coal-fired plant, which produces both hydrogen and electricity, has been developed. The majority of this paper concerns an integration of gasification unit, which is characterized by coal hydrogasification and carbon dioxide (CO2) separation, with a power island, where a high-hydrogen content syngas is burnt with pure oxygen stream. Another issue is the high temperature CO2 desorption. Because of the elevated temperature heat supply, the regeneration process affects the overall performance of ZECOMIX plant. An advanced steam cycle characterized by a medium pressure steam compressor and expander has been considered for power generation. A preliminary study of different components leads to analyze possible routes for optimization of the whole plant. The plant equipped with a CO2 capture unit could reach efficiency close to 50%. The simulations of a thermodynamic model were carried out using the software ChemCAD.

This study is a part of a larger research project, named ZECOMIX, led by ENEA (Italian Research Agency for New technologies, Energy and Environment), other partners being ANSALDO and different Italian Universities. It is aimed at analyzing an integrated hydrogen and power production plant.  相似文献   

9.
采用固定床反应器,在不同的反应温度(973 K~1 123 K)、压力(3 MPa~7 MPa)和制焦温度(973 K~1 073 K)下,分别研究了煤种、温度、压力和制焦温度对大同煤焦、西班牙煤焦和平顶山煤焦的加氢气化的影响;认为煤加氢气化过程分为3个反应阶段。实验结果表明,在高温、高压条件下,有利于促进甲烷的产率和提高碳转化率。  相似文献   
10.
BACKGROUND: This paper reports on process synthesis and economics of combined methanol and CHP (combined heat and power) energy production from crude biooil, waste glycerol produced in biodiesel factories and biomass wastes using integrated reactor design for hydrogen rich syngas. This new process consists of three process steps: (a) pyrolysis of organic waste material to produce biooil, char and pyrogas; (b) steam assisted hydrogasification of the crude glycerol wastes, biooil mixed with pyrogas for hydrogen rich gas; and (c) a low temperature methanol synthesis process. The H2‐rich gas remaining after methanol synthesis is recycled back to the pyrolysis reactor, the catalytic hydro‐gasification process and the heat recovery steam generator (HRSG). RESULTS: The breakeven price of the Hbiomethanol process yields positive net financial NPV and IRR above 600 USD per tonne. The total capital cost for a small‐scale methanol plant of capacity 2 tonne h?1 combined with a cogeneration plant of capacity 2 MWe power is estimated to be 170.5 million USD. CONCLUSION: Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventionally while the plant still maintains a high methanol yield. The integrated hydrogasification reactor and energy recovery design process minimizes heat loss and increases the process thermal efficiency. The Hbiomethanol process can convert any condensed carbonaceous material and liquid wastes, to produce methanol and CHP. Copyright © 2012 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号