首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2831篇
  免费   186篇
  国内免费   250篇
工业技术   3267篇
  2024年   9篇
  2023年   72篇
  2022年   98篇
  2021年   155篇
  2020年   129篇
  2019年   137篇
  2018年   106篇
  2017年   112篇
  2016年   89篇
  2015年   109篇
  2014年   150篇
  2013年   175篇
  2012年   162篇
  2011年   227篇
  2010年   139篇
  2009年   160篇
  2008年   137篇
  2007年   181篇
  2006年   176篇
  2005年   116篇
  2004年   115篇
  2003年   79篇
  2002年   91篇
  2001年   72篇
  2000年   59篇
  1999年   53篇
  1998年   24篇
  1997年   34篇
  1996年   19篇
  1995年   15篇
  1994年   12篇
  1993年   8篇
  1992年   6篇
  1991年   12篇
  1990年   9篇
  1989年   8篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有3267条查询结果,搜索用时 15 毫秒
1.
2.
For the purpose of developing biodegradable magnesium alloys with suitable properties for biomedical applications, Mg–Zn–Ca–Cu metallic glasses were prepared by copper mold injection methods. In the present work, the effect of Cu doping on mechanical properties, corrosion behavior, and glass-forming ability of Mg66Zn30Ca4 alloy was studied. The experimental findings demonstrated that the incorporation of Cu decreases the corrosion resistance of alloys, but increases the microhardness and degradation rate slightly. However, the addition of a trace amount of Cu can make the samples have antibacterial properties. Therefore, Mg–Zn–Ca–Cu has great advantages in clinical implantation and is the potential implant material.  相似文献   
3.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
4.
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion.  相似文献   
5.
The mechanical property of age‐hardenable Al‐alloys is governed by the state of ageing, which determines the microstructure and consequently, their corrosion behavior which is a vital aspect for a number of applications. This article presents a comparative assessment of corrosion behavior of under‐, peak‐ and over‐aged Al‐Mg‐Si alloy. Corrosion characteristics have been determined via immersion tests in 0.1 M ortho‐phosphoric acid solution and intergranular corrosion (IGC) tests. Corroded surfaces are examined by field emission scanning electron micrographs‐energy dispersive spectroscopy and 3D optical profilometer. The obtained results reveal that the corrosion rate at a specific immersion time as well as the depth of IGC increases in the order for under‐, peak‐, and over‐aged states. Irrespective of the state of ageing, corrosion loss increases linearly but the rate of corrosion decreases rapidly with increasing immersion time. The dominant mode of corrosion in under‐aged alloy is identified as localized pitting, while peak‐aged is highly susceptible to IGC in contrast extensive pitting corrosion is observed for over‐aged alloy. The observed differences in corrosion behavior are explained considering characteristics of precipitates. Formation of β (Mg2Si) in case of over‐aged alloy and presence of inclusions like AlFeMnSi particles are found to accelerate pitting corrosion.  相似文献   
6.
7.
8.
Nano crystalline pure and Mg doped ceriaparticles were synthesized by simple chemical co-precipitation method using cerium nitrate hexahydrate as a source material and magnesium nitrate as doping precursor at room temperature. The effect of doping were investigated by X-ray diffraction pattern(XRD), FT-Raman,fourier transform infrared spectroscopy(FTIR), Ultraviolet spectroscopy(UV), photoluminescence spectroscopy(PL), field emission scanning electron microscope(FESEM) and high resolution transmission electron microscopy with energy dispersive spectroscopy (HRTEM &EDS). The X-ray diffraction pattern and FT-Raman studies showed that the prepared samples were nano particulates with cubic fluorite structure. The XRD pattern analysis showed that the size of the particles ranged from 13 to 20?nm, however 4?wt% Mg doping results in reduction of particle size compared with other doping concentrations. The effects of Mg concentration on various structural parameters of the prepared samples were also determined. The slight blue shift observed upon doping in UV–Vis absorption region around 330–360nmrecorded for reduction in particle size. The FTIR unveils the presence of Metal oxygen bonds below 700?cm?1in the prepared samples. All samples showed a broad emission band at 430?nm with linearly increasing intensity with respect to dopant concentrations. The Spherical morphology with weak agglomeration was identified through FESEM and HRTEM analysis. The elemental analysis of Ce, O and Mg were confirmed through EDS analysis.  相似文献   
9.
Although Mg alloy attracts great attention for engineering applications because of high specific strength and low density, low corrosion resistance limits its extensive use. In this study, Mg–Al–Zn–Mn alloy was treated via a laser cladding process to generate a dense and compact laser cladding layer with solid metallurgical bonding on the substrate for improving corrosion resistance, effectively hindering the corrosion pervasion into Mg alloy. The corrosion current density declined from 103 μA/cm2 for Mg alloy to 13 μA/cm2 for the laser cladding layer in NaCl aqueous solution. Moreover, the laser cladding layer was slightly corroded in comparison with Mg alloy in NaCl aqueous solution. Besides, the microhardness of the cladding layer reached a mean value of 170.5 HV, 3.1 times of Mg alloy (56.8 HV) due to the in situ formation of hardening intermetallic phases. Wear resistance of laser cladding layer was also obviously improved. These results demonstrated that the laser cladding layer obviously enhanced anticorrosion property of Mg alloy for engineering applications.  相似文献   
10.
Although Mg alloy possesses high specific strength, low density, and good biocompatibility, poor corrosion resistance hinders its further applications. In the present study, an innovative protective layer against corrosion was prepared on the AZ31 Mg alloy via alkali pretreatment followed by vanillic acid treatment. The alkali pretreatment supplied –OH for the AZ31 Mg alloy surface to react with vanillic acid. The vanillic acid treatment played a crucial role in enhancing the corrosion resistance due to the excellent ability to act as a barrier and retard aqueous solution penetration, which effectively isolated the underlying Mg alloy from the corrosive environment. The corrosion current density of alkali and vanillic acid-treated Mg alloy (AZ31V) almost showed two orders of magnitude lower values in comparison with that of the AZ31 Mg alloy, and the corrosion potential of AZ31V Mg alloy increased from −1.41 to −1.25 V. The immersion tests proved that there was no occurrence of severe corrosion. Hence, the alkali pretreatment and vanillic acid treatment may represent a promising method to improve the corrosion resistance of Mg alloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号