首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55686篇
  免费   4599篇
  国内免费   150篇
医药卫生   60435篇
  2023年   291篇
  2022年   199篇
  2021年   1131篇
  2020年   655篇
  2019年   1086篇
  2018年   1308篇
  2017年   950篇
  2016年   1024篇
  2015年   1229篇
  2014年   1797篇
  2013年   2492篇
  2012年   3801篇
  2011年   3887篇
  2010年   2106篇
  2009年   1868篇
  2008年   3392篇
  2007年   3639篇
  2006年   3537篇
  2005年   3436篇
  2004年   3180篇
  2003年   3026篇
  2002年   2853篇
  2001年   882篇
  2000年   839篇
  1999年   837篇
  1998年   642篇
  1997年   514篇
  1996年   402篇
  1995年   508篇
  1994年   427篇
  1993年   394篇
  1992年   535篇
  1991年   485篇
  1990年   503篇
  1989年   465篇
  1988年   425篇
  1987年   371篇
  1986年   380篇
  1985年   426篇
  1984年   365篇
  1983年   299篇
  1982年   253篇
  1981年   230篇
  1980年   206篇
  1979年   241篇
  1978年   232篇
  1974年   210篇
  1973年   194篇
  1972年   188篇
  1968年   185篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Patient navigation is a strategy for overcoming barriers to reduce disparities and to improve access and outcomes. The aim of this umbrella review was to identify, critically appraise, synthesize, and present the best available evidence to inform policy and planning regarding patient navigation across the cancer continuum. Systematic reviews examining navigation in cancer care were identified in the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Embase, Cumulative Index of Nursing and Allied Health (CINAHL), Epistemonikos, and Prospective Register of Systematic Reviews (PROSPERO) databases and in the gray literature from January 1, 2012, to April 19, 2022. Data were screened, extracted, and appraised independently by two authors. The JBI Critical Appraisal Checklist for Systematic Review and Research Syntheses was used for quality appraisal. Emerging literature up to May 25, 2022, was also explored to capture primary research published beyond the coverage of included systematic reviews. Of the 2062 unique records identified, 61 systematic reviews were included. Fifty-four reviews were quantitative or mixed-methods reviews, reporting on the effectiveness of cancer patient navigation, including 12 reviews reporting costs or cost-effectiveness outcomes. Seven qualitative reviews explored navigation needs, barriers, and experiences. In addition, 53 primary studies published since 2021 were included. Patient navigation is effective in improving participation in cancer screening and reducing the time from screening to diagnosis and from diagnosis to treatment initiation. Emerging evidence suggests that patient navigation improves quality of life and patient satisfaction with care in the survivorship phase and reduces hospital readmission in the active treatment and survivorship care phases. Palliative care data were extremely limited. Economic evaluations from the United States suggest the potential cost-effectiveness of navigation in screening programs.  相似文献   
2.
3.
4.
5.
6.
AimsThe aims were to 1) develop the pharmacokinetics model to describe and predict observed tanezumab concentrations over time, 2) test possible covariate parameter relationships that could influence clearance and distribution and 3) assess the impact of fixed dosing vs. a dosing regimen adjusted by body weight.MethodsIndividual concentration–time data were determined from 1608 patients in four phase 3 studies conducted to assess efficacy and safety of intravenous tanezumab. Patients received two or three intravenous doses (2.5, 5 or 10 mg) every 8 weeks. Blood samples for assessment of tanezumab PK were collected at baseline, 1 h post‐dose and at weeks 4, 8, 16 and 24 (or early termination) in all studies. Blood samples were collected at week 32 in two studies. Plasma samples were analyzed using a sensitive, specific, validated enzyme‐linked immunosorbent assay.ResultsA two compartment model with parallel linear and non‐linear elimination processes adequately described the data. Population estimates for clearance (CL), central volume (V 1), peripheral volume (V 2), inter‐compartmental clearance, maximum elimination capacity (VM) and concentration at half‐maximum elimination capacity were 0.135 l day–1, 2.71 l, 1.98 l, 0.371 l day–1, 8.03 μg day–1 and 27.7 ng ml–1, respectively. Inter‐individual variability (IIV) was included on CL, V 1, V 2 and VM. A mixture model accounted for the distribution of residual error. While gender, dose and creatinine clearance were significant covariates, only body weight as a covariate of CL, V 1 and V 2 significantly reduced IIV.ConclusionsThe small increase in variability associated with fixed dosing is consistent with other monoclonal antibodies and does not change risk : benefit.  相似文献   
7.
The value of adding simeprevir (SMV) vs placebo (PBO) to peginterferon and ribavirin (PR) for treatment of chronic hepatitis C virus infection was examined using patient‐reported outcomes (PROs); further, concordance of PROs with virology endpoints and adverse events (AEs) was explored. Patients (= 768 SMV/PR,= 393 PBO/PR) rated fatigue (FSS), depressive symptoms (CES‐D) and functional impairment (WPAI: Hepatitis C Productivity, Daily Activity and Absenteeism) at baseline and throughout treatment in three randomised, double‐blind trials comparing the addition of SMV or PBO during initial 12 weeks of PR. PR was administered for 48 weeks (PBO group) and 24/48 weeks (SMV group) using a response‐guided therapy (RGT) approach. Mean PRO scores (except Absenteeism) worsened from baseline to Week 4 to the same extent in both groups but reverted after Week 24 for SMV/PR and only after Week 48 for PBO/PR. Accordingly, there was a significantly lower area under the curve (baseline–Week 60, AUC60) and fewer weeks with clinically important worsening of scores in the SMV/PR group at any time point. Incidences of patients with fatigue and anaemia AEs were similar in both groups, but FSS scores showed that clinically important increases in fatigue lasted a mean of 6.9 weeks longer with PBO/PR (P < 0.001). PRO score subgroup analysis indicated better outcomes for patients who met the criteria for RGT or achieved sustained virological response 12 weeks post‐treatment (SVR12); differences in mean PRO scores associated with fibrosis level were only observed with PBO/PR. Greater efficacy of SMV/PR enabled reduced treatment duration and reduced time with PR‐related AEs without adding to AE severity.  相似文献   
8.
Lung and female breast cancers are highly prevalent worldwide. Although the association between exposure to ambient fine particulate matter (PM2.5) and lung cancer has been recognized, there is less evidence for associations with other common air pollutants such as nitrogen dioxide (NO2) and ozone (O3). Even less is known about potential associations between these pollutants and breast cancer. We conducted a population-based cohort study to investigate the associations of chronic exposure to PM2.5, NO2, O3 and redox-weighted average of NO2 and O3 (Ox) with incident lung and breast cancer, using the Ontario Population Health and Environment Cohort (ONPHEC), which includes all long-term residents aged 35–85 years who lived in Ontario, Canada, 2001–2015. Incident lung and breast cancers were ascertained using the Ontario Cancer Registry. Annual estimates of exposures were assigned to the residential postal codes of subjects for each year during follow-up. We used Cox proportional-hazards models adjusting for personal- and neighborhood-level covariates. Our cohorts for lung and breast cancer analyses included ~4.9 million individuals and ~2.5 million women, respectively. During follow-up, 100,146 incident cases of lung cancer and 91,146 incident cases of breast cancer were diagnosed. The fully adjusted analyses showed positive associations of lung cancer incidence with PM2.5 (hazard ratio [HR] = 1.02 [95% CI: 1.01–1.05] per 5.3 μg/m3) and NO2 (HR = 1.05 [95% CI: 1.03–1.07] per 14 ppb). No associations with lung cancer were observed for O3 or Ox. Relationships between PM2.5 and NO2 with lung cancer exhibited a sublinear shape. We did not find compelling evidence linking air pollution to breast cancer.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号