首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4203篇
  免费   170篇
  国内免费   20篇
工业技术   4393篇
  2023年   30篇
  2021年   111篇
  2020年   59篇
  2019年   75篇
  2018年   84篇
  2017年   65篇
  2016年   113篇
  2015年   84篇
  2014年   126篇
  2013年   248篇
  2012年   251篇
  2011年   290篇
  2010年   243篇
  2009年   261篇
  2008年   284篇
  2007年   222篇
  2006年   211篇
  2005年   141篇
  2004年   142篇
  2003年   166篇
  2002年   149篇
  2001年   71篇
  2000年   63篇
  1999年   49篇
  1998年   53篇
  1997年   45篇
  1996年   52篇
  1995年   61篇
  1994年   52篇
  1993年   56篇
  1992年   55篇
  1991年   50篇
  1990年   31篇
  1989年   46篇
  1988年   14篇
  1987年   36篇
  1986年   22篇
  1985年   40篇
  1984年   21篇
  1983年   32篇
  1982年   31篇
  1981年   30篇
  1980年   18篇
  1979年   23篇
  1978年   23篇
  1977年   17篇
  1976年   10篇
  1975年   9篇
  1974年   7篇
  1973年   8篇
排序方式: 共有4393条查询结果,搜索用时 15 毫秒
1.
Numbers of patients with coronavirus disease 2019 (COVID-19) have increased rapidly worldwide. Plasma levels of full-length galectin-9 (FL-Gal9) and osteopontin (FL-OPN) as well as their truncated forms (Tr-Gal9, Ud-OPN, respectively), are representative inflammatory biomarkers. Here, we measured FL-Gal9, FL-OPN, Tr-Gal9, and Ud-OPN in 94 plasma samples obtained from 23 COVID-19-infected patients with mild clinical symptoms (CV), 25 COVID-19 patients associated with pneumonia (CP), and 14 patients with bacterial infection (ID). The four proteins were significantly elevated in the CP group when compared with healthy individuals. ROC analysis between the CV and CP groups showed that C-reactive protein had the highest ability to differentiate, followed by Tr-Gal9 and ferritin. Spearman’s correlation analysis showed that Tr-Gal9 and Ud-OPN but not FL-Gal9 and FL-OPN, had a significant association with laboratory markers for lung function, inflammation, coagulopathy, and kidney function in CP patients. CP patients treated with tocilizumab had reduced levels of FL-Gal9, Tr-Gal9, and Ud-OPN. It was suggested that OPN is cleaved by interleukin-6-dependent proteases. These findings suggest that the cleaved forms of OPN and galectin-9 can be used to monitor the severity of pathological inflammation and the therapeutic effects of tocilizumab in CP patients.  相似文献   
2.
The morphology and microstructure of splats impact the comprehensive capability of a new coating methodology called chelate flame spraying (CFS). This study addresses the quantitative characterization of the spread morphologies of flame sprayed Er2O3 splats directly deposited under different spray conditions on aluminum alloy substrates with a mirror finish. The influence of the in-flight particle temperature and velocity, carrier gas type, and carrier gas ratio on the solidification mechanism of molten droplets was investigated. Image analysis methods were employed to identify single splats from the morphology observed with field-emission scanning electron microscopy (FE-SEM). In addition, Er2O3 films were synthesized on an Al–Mg alloy (A5052) substrate using N2 or O2 as the carrier gas. When O2 was used as the carrier gas, 109-μm-thick films were deposited on the A5052 substrate. The cross-sectional porosity of the films was 3.8%. In contrast, films with 101-μm thickness were synthesized on the A5052 substrate when N2 was used as the carrier gas. The cross-sectional porosity of these films was 13.8%. The results showed that the carrier gas type (N2) and carrier gas ratio had a significant effect on the flattening behavior of the molten droplets. A spraying method combined with multidimensional modes is proposed to control the morphology of the splats.  相似文献   
3.
Pyogenic spondylodiscitis can cause severe osteolytic and destructive lesions in the spine. Elderly or immunocompromised individuals are particularly susceptible to infectious diseases; specifically, infections in the spine can impair the ability of the spine to support the trunk, causing patients to be bedridden, which can also severely affect the physical condition of patients. Although treatments for osteoporosis have been well studied, treatments for bone loss secondary to infection remain to be elucidated because they have pathological manifestations that are similar to but distinct from those of osteoporosis. Recently, we encountered a patient with severely osteolytic pyogenic spondylodiscitis who was treated with romosozumab and exhibited enhanced bone formation. Romosozumab stimulated canonical Wnt/β-catenin signaling, causing robust bone formation and the inhibition of bone resorption, which exceeded the bone loss secondary to infection. Bone loss due to infections involves the suppression of osteoblastogenesis by osteoblast apoptosis, which is induced by the nuclear factor-κB and mitogen-activated protein kinase pathways, and osteoclastogenesis with the receptor activator of the nuclear factor-κB ligand-receptor combination and subsequent activation of the nuclear factor of activated T cells cytoplasmic 1 and c-Fos. In this study, we review and discuss the molecular mechanisms of bone loss secondary to infection and analyze the efficacy of the medications for osteoporosis, focusing on romosozumab, teriparatide, denosumab, and bisphosphonates, in treating this pathological condition.  相似文献   
4.
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.  相似文献   
5.
Cyclodextrins (CyDs) are water-soluble host molecules possessing a nanosized hydrophobic cavity. In the realm of molecular recognition, this cavity is used not only as a recognition site but also as a reaction medium, where a hydrophobic sensor recognizes a guest molecule. Based on the latter concept, we have designed a novel supramolecular sensing system composed of Zn(II)-dipicolylamine metal complex-based azobenzene (1-Zn) and 3A-amino-3A-deoxy-(2AS,3AS)-γ-cyclodextrin (3-NH2-γ-CyD) for sensing adenosine-5′-triphosphate (ATP). 1-Zn showed redshifts in the UV-Vis spectra and induced circular dichroism (ICD) only when both ATP and 3-NH2-γ-CyD were present. Calculations of equilibrium constants indicated that the amino group of 3-NH2-γ-CyD was involved in the formation of supramolecular 1-Zn/3-NH2-γ-CyD/ATP. The Job plot of the ICD spectral response revealed that the stoichiometry of 1-Zn/3-NH2-γ-CyD/ATP was 2:1:1. The pH effect was examined and 1-Zn/3-NH2-γ-CyD/ATP was most stable in the neutral condition. The NOESY spectrum suggested the localization of 1-Zn in the 3-NH2-γ-CyD cavity. Based on the obtained results, the metal coordination interaction of 1-Zn and the electrostatic interaction of 3-NH2-γ-CyD were found to take place for ATP recognition. The “reaction medium approach” enabled us to develop a supramolecular sensing system that undergoes multi-point interactions in water. This study is the first step in the design of a selective sensing system based on a good understanding of supramolecular structures.  相似文献   
6.
Lysine demethylase 5 C (KDM5C) controls epigenetic gene expression and is attracting great interest in the field of chemical epigenetics. KDM5C has emerged as a therapeutic target for anti-prostate cancer agents, and recently we identified triazole 1 as an inhibitor of KDM5C. Compound 1 exhibited highly potent KDM5C-inhibitory activity in in vitro enzyme assays, but did not show strong anticancer effects. Therefore, a different approach is needed for the development of anticancer agents targeting KDM5C. Here, we attempted to identify KDM5C degraders by focusing on a protein-knockdown strategy. Compound 3 b , which was designed based on compound 1 , degraded KDM5C and inhibited the growth of prostate cancer PC-3 cells more strongly than compound 1 . These findings suggest that KDM5C degraders are more effective as anticancer agents than compounds that only inhibit the catalytic activity of KDM5C.  相似文献   
7.
8.
9.
The effect of Mo on the corrosion behavior of Ni20Cr–xMo alloys in an oxidizing chlorine-containing atmosphere using air mixed with the salt-vapor mixture of NaCl–KCl–CaCl2 at 570°C was investigated. The results revealed that the corrosion performance of the Ni20Cr alloys in the oxidizing chlorine atmosphere was improved by Mo addition of up to 3 wt%. The Mo-free alloy formed a potassium chromate during corrosion as a result of the reaction between the Cr2O3 scale and KCl vapor. The chromate formation increased the chlorine potential at the scale surface and induced the breakdown of the protective Cr2O3 scale, resulting in internal chromium chloride precipitates and a Cr-depleted zone. In contrast, the presence of Mo resulted in the formation of a NiO scale, which did not react with the salt vapors and, therefore, prevented the formation of chromates. The beneficial effect of Mo on the high-temperature chlorination of Ni–Cr alloys in salt-vapor-containing atmospheres was ascribed to the suppression of chlorine generation due to NiO scale formation.  相似文献   
10.
Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl maltooligosaccharides made from potato starch. POs-Ca is highly water-soluble and can supply both the calcium ion and acidic oligosaccharides in an aqueous solution. In this study, we investigated the effects of POs-Ca on the mycelial growth and fruiting body yield of Pleurotus ostreatus , which is one of the most widely cultivated edible mushrooms in the world. We cultivated the mushroom using both potato dextrose agar (PDA) medium and sawdust-based medium, with added calcium salts. The addition of POs-Ca into the PDA medium with a calcium concentration of 10 mg increased mycelial growth significantly ( p < 0.05, vs . control). POs-Ca addition to the sawdust-based medium at concentrations of 1.0 to 3.0 g/100 g medium increased the amount of calcium in the fruiting bodies but did not affect the length of the cultivation period or the weight of the fruiting body. The calcium content in the fruiting body increased 12-fold when compared to the control. On the other hand, neither the CaHPO 4 ・2H 2 O group nor the CaHPO 4 ・2H 2 O with oligosaccharides group showed changes in the calcium content of the fruiting bodies. Our results indicate that the use of POs-Ca in mushroom cultivation allows for the possibility of developing new functional foods like calcium-enriched edible mushrooms. This is the first report describing the effects of POs-Ca on mushroom cultivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号