首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1432篇
  免费   126篇
  国内免费   16篇
工业技术   1574篇
  2024年   5篇
  2023年   21篇
  2022年   32篇
  2021年   108篇
  2020年   80篇
  2019年   82篇
  2018年   129篇
  2017年   97篇
  2016年   115篇
  2015年   62篇
  2014年   87篇
  2013年   166篇
  2012年   107篇
  2011年   119篇
  2010年   97篇
  2009年   71篇
  2008年   50篇
  2007年   37篇
  2006年   23篇
  2005年   17篇
  2004年   8篇
  2003年   11篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   12篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1976年   2篇
排序方式: 共有1574条查询结果,搜索用时 15 毫秒
1.
In this study, the effect of Co addition on microstructural and mechanical properties of WC-B4C–SiC composites sintered by spark plasma sintering (SPS) method was investigated. For this purpose, three batches of WC-B4C–SiC with different contents of Co (10 vol%, 15 vol%, and 20 Vol %) were sintered at 1400 °C. The results of X-ray diffraction (XRD) analysis of the samples indicated the formation of W2B5, W3CoB3 as well as the remained C phases and unreacted SiC phase. It was observed that by increasing the Co content, the amount of W2B5 phase reduces and W3CoB3 and C contents increase. Therefore, W2B5 peaks were not detected in the sample containing 20vol% Co. Relative density values above 97% were obtained for all the composites. However, a decrease was observed in relative density by increasing the Co content in the composites. The highest flexural strength (510 ± 42 MPa), fracture toughness (10.34 ± 0.82 MPa m1/2), and hardness (20.63 ± 0.75 GPa) were also obtained for the sample containing 10vol% Co compared to the other samples. In addition, Transgranular fracture of SiC as well as pulling out of W3CoB3 and W2B5 particles were observed in the fracture surface micrographs of the samples. The presence of micro-cracks in the SiC grains, fracture of W3CoB3 grains, and crack deflection was reported as dominant toughening mechanisms.  相似文献   
2.
Telecommunication Systems - Queueing models play a significant role in analysing the performance of power management systems in various electronic devices and communication systems. This paper...  相似文献   
3.
4.
The symmetrical and asymmetrical electrodes made of Mg were studied in 0.1-M NaCl electrolyte adjusted at pH 12. The statistical and wavelet methods were employed for analyzing the electrochemical current noise (ECN) signals. The asymmetric configuration was used for electrochemical detection of filiform corrosion on Mg electrode. The real time scale of the dominant transients of the asymmetric electrodes was detected on the basis of the maximum peak in the SDPS plots. The SDPS values of the real time scale crystals of the ECN signals resulting from asymmetrical electrodes increased with the increase in immersion time due to the onset of filiform corrosion.  相似文献   
5.
Increasing the heat capacity of heat exchangers is a crucial need for modern devices. The thermal conductivity of the usual fluids and the Nusselt (Nu) number of flows containing such fluids are two bottlenecks in the way of increasing heat delivery in the heat exchangers. For this reason, nanofluids have been introduced. The effect of utilizing a Cu-water nanofluid as a coolant of two hot pipes in a square cavity is investigated numerically with a two-component lattice Boltzmann method. The volume fraction of nanoparticles is assumed to be constant (0.03) while the Richardson (Ri) number varies from 0.02 to 20. Results show that the effectiveness of nanoparticles is better observed in the natural convection mode. However, sedimentation is also very probable at high Ri numbers, which significantly reduces the effectiveness of the nanoparticles. Configurations which produce a natural convection stream similar to the forced convection one as well as the configurations with high spacing and hence, low heat stream interactions, are the best choices for a uniform heat rate from the pipes.  相似文献   
6.

Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.

  相似文献   
7.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   
8.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
9.
10.
The potential energy profile of the reaction between dimethyl disulfide and OH? radicals is explored by utilizing ab initio and hybrid meta density functional theory methods. Having the energies and structural data of the stationary points, statistical rate theories, such as transition state theory and variable reaction coordinate-transition state theory, are employed to compute the overall rate constants, and discuss the mechanism and product channels. On the basis of the calculations, the overall rate coefficient is predicted to be 2.49?×?10?10?cm3?molecule?1?s?1 at 298?K. It is found that in the most favorable pathway, the reaction proceeds via formation of the relatively unstable intermediate CH3S?(OH)SCH3 decomposing rapidly to yield CH3S?+CH3SOH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号