首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   31篇
  国内免费   3篇
工业技术   520篇
  2024年   1篇
  2023年   10篇
  2022年   6篇
  2021年   21篇
  2020年   16篇
  2019年   24篇
  2018年   23篇
  2017年   24篇
  2016年   22篇
  2015年   18篇
  2014年   17篇
  2013年   39篇
  2012年   19篇
  2011年   32篇
  2010年   23篇
  2009年   31篇
  2008年   22篇
  2007年   20篇
  2006年   22篇
  2005年   9篇
  2004年   10篇
  2003年   9篇
  2002年   12篇
  2001年   5篇
  2000年   9篇
  1999年   6篇
  1998年   10篇
  1997年   14篇
  1996年   9篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
排序方式: 共有520条查询结果,搜索用时 406 毫秒
1.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
2.
3.
Human platelets bear on their surface complement receptor type II (CR2), which is also the receptor for the EBV. Although the cross-linking of these receptors causes activation and aggregation of platelets, no immunologic consequence of the potential binding of EBV to these receptors on human platelets has ever been described. We report here that binding of EBV to human platelets causes the release of TGF-beta from the latter. Both infectious and UV-inactivated noninfectious viral particles can mediate this release. Anti-CR2 mAb OKB7, which blocks the binding of EBV to CR2, also blocks the EBV-mediated release of TGF-beta. Furthermore, platelets recovered from the initial incubation no longer release TGF-beta upon subsequent incubation with EBV. Since TGF-beta is a potent immunosuppressive agent, its release from platelets upon binding of EBV may play a role in the pathogenesis of EBV-associated diseases.  相似文献   
4.
A Finite Element Graph (FEG) is defined here as a nodal graph (G), a dual graph (G*), or a communication graph (G˙) associated with a generic finite element mesh. The Laplacian matrix ( L (G), L (G*) or L (G˙)), used for the study of spectral properties of an FEG, is constructed from usual vertex and edge connectivities of a graph. An automatic algorithm, based on spectral properties of an FEG (G, G* or G˙), is proposed to reorder the nodes and/or elements of the associated finite element mesh. The new algorithm is called Spectral PEG Resequencing (SFR). This algorithm uses global information in the graph, it does not depend on a pseudoperipheral vertex in the resequencing process, and it does not use any kind of level structure of the graph. Moreover, the SFR algorithm is of special advantage in computing environments with vector and parallel processing capabilities. Nodes or elements in the mesh can be reordered depending on the use of an adequate graph representation associated with the mesh. If G is used, then the nodes in the mesh are properly reordered for achieving profile and wavefront reduction of the finite element stiffness matrix. If either G* or G˙ is used, then the elements in the mesh are suitably reordered for a finite element frontai solver, A unified approach involving FEGs and finite element concepts is presented. Conclusions are inferred and possible extensions of this research are pointed out. In Part II of this work,1 the computational implementation of the SFR algorithm is described and several numerical examples are presented. The examples emphasize important theoretical, numerical and practical aspects of the new resequencing method.  相似文献   
5.
Oxygenated fuels increase fuel consumption due to their low enthalpy of combustion; however, their high antiknock index renders them suitable for use in engines with a high compression rate, increasing their thermal yield. This study evaluated the performance of biorenewable oxygenated fuels (ethanol and isoamyl alcohol) and partially renewable fuels (ETBE: ethyl tert-butyl ether, TAEE: tert-amyl ethyl ether and di-TAE: di-tert-amyl ether) with high degree of purity and in mixtures with automotive gasoline, based on tests with Otto cycle engines. Among the oxygenated fuels evaluated here, di-TAE was found to present the best characteristics of performance, both individually and in mixtures with gasoline.  相似文献   
6.
Image segmentation towards new image representation methods   总被引:1,自引:0,他引:1  
Very low bit-rate video coding has recently become one of the most important areas of image communication and a large variety of applications have already been identified. Since conventional approaches are reaching a saturation point, in terms of coding efficiency, a new generation of video coding techniques, aiming at a deeper “understanding” of the image, is being studied. In this context, image analysis, particularly the identification of objects or regions in images (segmentation), is a very important step. This paper describes a segmentation algorithm based on split and merge. Images are first simplified using mathematical morphology operators, which eliminate perceptually less relevant details. The simplified image is then split according to a quad tree structure and the resulting regions are finally merged in three steps: merge, elimination of small regions and control of the number of regions.  相似文献   
7.
Phase inversion is a very flexible technique to obtain membranes with a large sort of morphologies. Membrane properties can vary greatly depending on the kind of polymer system used. Bisphenol A polycarbonate (PC) could be used as a phase inversion membrane base polymer, and presents very good properties. Nevertheless, very little information on membrane preparation using PC and the phase inversion process can be found in the literature. In this work flat‐sheet microporous membranes were obtained by the phase inversion process using the immersion precipitation technique. A new polymer system was studied, consisting of polycarbonate, N‐methyl‐2‐pyrrolidone as solvent, water as the nonsolvent, and an additive. The influence of some parameters on membrane morphology, such as polymer solution composition, exposition time before immersion into the precipitation bath, and the kind of additive was investigated. Precipitation was followed using light transmission experiments and membrane morphology was observed through Scanning Electron Microscopy (SEM). The viscosity and cloud points of all polymer solutions were also determined. The results were related to the studied synthesis parameters, using the basic principles of membrane formation by the phase inversion technique, looking forward to establishing criteria to control the morphology of flat‐sheet membranes using polycarbonate as the base polymer. The results showed that both additives were able to increase pore interconnectivity and even suppress macrovoid formation. The decrease in the miscibility region of the polymer system and increase in mass transfer resistance are found to be the determining factors during polymer solution precipitation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3085–3096, 2002  相似文献   
8.
Characterization of hydroxyl-terminated polybutadiene   总被引:1,自引:0,他引:1  
Commercial samples of hydroxyl terminated polybutadienes (HTPB) were analysed by 1H and 13C NMR spectroscopy, in regard to hydroxylated end groups. The results were discussed and compared with those reported so far.  相似文献   
9.
The quality of machined components is currently of high interest, for the market demands mechanical components of increasingly high performance, not only from the standpoint of functionality but also from that of safety. Components produced through operations involving the removal of material display surface irregularities resulting not only from the action of the tool itself, but also from other factors that contribute to their superficial texture. This texture can exert a decisive influence on the application and performance of the machined component. This article analyzes the behavior of the minimum quantity lubricant (MQL) technique and compares it with the conventional cooling method. To this end, an optimized fluid application method was devised using a specially designed nozzle, by the authors, through which a minimum amount of oil is sprayed in a compressed air flow, thus meeting environmental requirements. This paper, therefore, explores and discusses the concept of the MQL in the grinding process. The performance of the MQL technique in the grinding process was evaluated based on an analysis of the surface integrity (roughness, residual stress, microstructure and microhardness). The results presented here are expected to lead to technological and ecological gains in the grinding process using MQL.  相似文献   
10.
The recent trend to reduce the thickness of metallic sheets used in forming processes strongly increases the likelihood of the occurrence of wrinkling. Thus, in order to obtain defect-free components, the prediction of this kind of defect becomes extremely important in the tool design and selection of process parameters. In this study, the sheet metal forming process proposed as a benchmark in the Numisheet 2014 conference is selected to analyse the influence of the tool geometry on wrinkling behaviour, as well as the reliability of the developed numerical model. The side-wall wrinkling during the deep drawing process of a cylindrical cup in AA5042 aluminium alloy is investigated through finite element simulation and experimental measurements. The material plastic anisotropy is modelled with an advanced yield criterion beyond the isotropic (von Mises) material behaviour. The results show that the shape of the wrinkles predicted by the numerical model is strongly affected by the finite element mesh used in the blank discretization. The accurate modelling of the plastic anisotropy of the aluminium alloy yields numerical results that are in good agreement with the experiments, particularly the shape and location of the wrinkles. The predicted punch force evolution is strongly influenced by the friction coefficient used in the model. Moreover, the two punch geometries provide drawn cups with different wrinkle waves, mainly differing in amplitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号