首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2317篇
  免费   128篇
  国内免费   9篇
工业技术   2454篇
  2024年   3篇
  2023年   57篇
  2022年   57篇
  2021年   148篇
  2020年   117篇
  2019年   118篇
  2018年   123篇
  2017年   89篇
  2016年   165篇
  2015年   59篇
  2014年   110篇
  2013年   173篇
  2012年   110篇
  2011年   133篇
  2010年   105篇
  2009年   99篇
  2008年   77篇
  2007年   75篇
  2006年   63篇
  2005年   46篇
  2004年   44篇
  2003年   43篇
  2002年   36篇
  2001年   25篇
  2000年   25篇
  1999年   26篇
  1998年   56篇
  1997年   43篇
  1996年   24篇
  1995年   19篇
  1994年   23篇
  1993年   26篇
  1992年   21篇
  1991年   11篇
  1990年   12篇
  1989年   8篇
  1988年   8篇
  1987年   5篇
  1986年   9篇
  1985年   9篇
  1984年   7篇
  1983年   5篇
  1982年   8篇
  1981年   7篇
  1980年   3篇
  1978年   4篇
  1977年   8篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
排序方式: 共有2454条查询结果,搜索用时 406 毫秒
1.
To prevent the adulteration of agricultural resources and provide a solution to enhance the green coffee bean supply chain, authentication using the near-infrared spectroscopy (NIRS) technique was investigated. Partial least square with discrimination analysis (PLS-DA) models combined with various preprocessing methods were built from NIR spectra of 153 Vietnamese green coffee samples. The model combined with the standard normal variate and the first order of derivative yielded excellent performance in predicting coffee species with the error cross-validation of 0.0261. PLS-DA model of mean centre and first-order derivative spectra also yielded good performance in verifying geographical indication of green coffee with the error of 0.0656. By contrast, the predicting abilities of post-harvest methods were poor. The overall results showed a high potential of the NIRS in online authentication practices.  相似文献   
2.
The severe environmental pollution in many countries is caused by indiscriminate discharge of large quantities of food waste (FW), fat oil and grease (FOG) and sewage sludge (SS) to the environment. There are many possible treatment routes, but anaerobic digestion (AD) is now well accepted for treating several kinds of organic wastes. But AD of FW alone presents some operational challenges because of substrates and variability. Anaerobic co-digestion of two or more substrates is better than single substrate digestion. This can use a plant’s unused capacity, in line with the trend to renewable energy. Co-digestion technology, although well established in many European countries, is still in its infancy in Ireland. There are problems with different regulatory arrangements. They should be resolved. The paper reviews anaerobic co-digestion technology is reviewed, with special focus on possible application in Ireland.  相似文献   
3.
Landsiedel  Justus  Root  Waleri  Schramm  Christian  Menzel  Alexander  Witzleben  Steffen  Bechtold  Thomas  Pham  Tung 《Nano Research》2020,13(10):2658-2664
Nano Research - Development of colored surfaces by formation of nano-structured aggregates is a widely used strategy in nature to color lightweight structures (e.g. butterflies) without the use of...  相似文献   
4.
WO3 is a potential material candidate for construction of photoanode for solar driven water splitting. In this work, μm-thick porous WO3 photoanode is prepared by depositing a stable ink made of WO3 nanoparticles and Aristoflex velvet polymer in water using the doctor blade technique, followed by a sintering in air. The nature of WO3 nanoparticles, its loading mass on F-doped tin oxide electrode as well as sintering temperature are examined in order to optimize the photocatalytic activity of the resultant WO3 photoanode. The operation of WO3 photoanode is investigated by varying the light illumination direction and light incident intensity as well as changing the nature of the electrolyte. Dissolved tungsten in electrolyte is quantified by ICP-MS providing insights into the influences of electrolyte nature and operating conditions to the corrosion of WO3. It is proposed that the H2O2 and OH. radical generated as by-products of the photo-driven water oxidation on the photoanode surface are harmful species that accelerate the dissolution of WO3.  相似文献   
5.
A new strategy for the selective coating of tin sulfide (SnS) on the surface of moth‐eye patterned (MEP) conducting polymer film is studied by considering the optical properties of the antireflective moth‐eye pattern and flexibility of polymer films. The semiconductor SnS is selectively coated on the surface of MEP microdomes of poly(3,4‐ethylenedioxythiophene) poly(styrene‐sulfonate) (PEDOT:PSS) film. The SnS coated MEP film is obtained by using pore selectively SnS thin layer functionalized polystyrene honeycomb‐patterned porous (HCP) film as a template. Aqueous PEDOT:PSS solution is poured on the SnS functionalized HCP films and detached for the fabrication of SnS coated MEP films. The films show a satisfactory photo‐responsive property under solar stimulated light illumination due to the antireflective MEP structure of PEDOT film and homogenous SnS coating on the surface of the conducting polymer.  相似文献   
6.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
7.
This work aims to clarify the photocatalytic degradation mechanism and heat reflectance recovery performance of waterborne acrylic polymer/ZnO nanocomposite coating. To fabricate the nanocomposite coating, ZnO nanoparticles (nano-ZnO) were dispersed into acrylic polymer matrix at the various concentrations from 1 to 6% (by total weight of resin solids). The photocatalytic degradation of nanocomposite coating under ultraviolet (UV) light irradiation has been investigated by monitoring its weight loss and chemical/microstructural/morphological changes. As the topcoat layer, its heat reflectance recovery has been evaluated under UV/condensation exposure by using an artificial dirty mixture of 85 wt% nanoclay, 10 wt% silica particles (1–5 μm), 1 wt% carbon black, and 2 wt% engine oil. After 108-cycle UV/condensation exposure, infrared spectra and weight loss analysis indicated that the maximal degradation for nanocomposite coating is observed at 1 wt% nano-ZnO. On the other hand, after 96 hr of UV light exposure, the nanocomposite coating with1 wt% nano-ZnO could restore effectively the reflective index of solar-heat reflectance coating (from 58.45 to 80.78%). Finally, the photodegradation mechanism of this waterborne acrylic polymer coating has been proposed as the UV-induced formation of CC CO conjugated double bonds. As a result, its self-cleaning phenomenon can be achieved as the recovery of heat reflectance.  相似文献   
8.
Vu  Hoa T.  Nguyen  Manh B.  Vu  Tan M.  Le  Giang H.  Pham  Trang T. T.  Nguyen  Trinh Duy  Vu  Tuan A. 《Topics in Catalysis》2020,63(11-14):1046-1055
Topics in Catalysis - Nano Fe-BTC/graphene oxide (GO) composites were successfully synthesized by hydrothermal treatment with a microwave-assisted method. Samples were characterized by X-ray...  相似文献   
9.
10.
Ethanol steam reforming (ESR) is one of the potential processes to convert ethanol into valuable products. Hydrogen produced from ESR is considered as green energy for the future and can be an excellent alternative to fossil fuels with the aim of mitigating the greenhouse gas effect. The ESR process has been well studied, using transition metals as catalysts coupled with both acidic and basic oxides as supports. Among various reported transition metals, Ni is an inexpensive material with activity comparable to that of noble metals, showing promising ethanol conversion and hydrogen yields. Additionally, different promoters and supports were utilized to enhance the hydrogen yield and the catalyst stability. This review summarizes and discusses the influences of the supports and promoters of Ni-based catalysts on the ESR process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号