首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14217篇
  免费   428篇
  国内免费   33篇
工业技术   14678篇
  2023年   60篇
  2022年   73篇
  2021年   186篇
  2020年   163篇
  2019年   213篇
  2018年   257篇
  2017年   256篇
  2016年   299篇
  2015年   189篇
  2014年   325篇
  2013年   715篇
  2012年   556篇
  2011年   711篇
  2010年   545篇
  2009年   532篇
  2008年   606篇
  2007年   575篇
  2006年   483篇
  2005年   465篇
  2004年   375篇
  2003年   357篇
  2002年   319篇
  2001年   291篇
  2000年   284篇
  1999年   316篇
  1998年   992篇
  1997年   635篇
  1996年   460篇
  1995年   359篇
  1994年   294篇
  1993年   309篇
  1992年   168篇
  1991年   147篇
  1990年   154篇
  1989年   149篇
  1988年   142篇
  1987年   111篇
  1986年   119篇
  1985年   159篇
  1984年   113篇
  1983年   100篇
  1982年   78篇
  1981年   98篇
  1980年   93篇
  1979年   91篇
  1978年   46篇
  1977年   116篇
  1976年   163篇
  1975年   57篇
  1973年   61篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
The interactions of amino acids and peptides at model membrane interfaces have considerable implications for biological functions, with the ability to act as chemical messengers, hormones, neurotransmitters, and even as antibiotics and anticancer agents. In this study, glycine and the short glycine peptides diglycine, triglycine, and tetraglycine are studied with regards to their interactions at the model membrane interface of Aerosol-OT (AOT) reverse micelles via 1H NMR spectroscopy, dynamic light scattering (DLS), and Langmuir trough measurements. It was found that with the exception of monomeric glycine, the peptides prefer to associate between the interface and bulk water pool of the reverse micelle. Monomeric glycine, however, resides with the N-terminus in the ordered interstitial water (stern layer) and the C-terminus located in the bulk water pool of the reverse micelle.  相似文献   
2.
Fan  Deng-Ping  Huang  Ziling  Zheng  Peng  Liu  Hong  Qin  Xuebin  Van Gool  Luc 《国际自动化与计算杂志》2022,19(4):257-287
Machine Intelligence Research - This paper aims to conduct a comprehensive study on facial-sketch synthesis (FSS). However, due to the high cost of obtaining hand-drawn sketch datasets, there is a...  相似文献   
3.
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.  相似文献   
4.
The microalgae growth rate in photobioreactors responds with inertia to light stimuli. Here, light variations experienced by the algae are accessed through a coupling of an irradiance field calculation and a Lagrangian particle tracking. The response of algae to fluctuating light is then described by a relaxation model involving a single time constant, the value of which is identified from published data. The overall growth rate is calculated as the sum of individual growth rates of all particles. Instantaneous adaptation and full integration asymptotic behaviors are recovered whilst a finite time constant reveals that the overall growth rate is dependent both on mixing and light distribution. This methodology thus quantitatively relates the design parameters to the photobioreactor performance.  相似文献   
5.
Model‐based optimization techniques play a key role in achieving a sustainable operation of biochemical processes. Models are an approximation of the real process under study, hence, uncertainty is inherently present and for a sustainable process operation this uncertainty should be accounted for. In practice, optimality with respect to different conflicting objectives is required and multi‐objective optimization is a valuable tool. In this article the sigma point approach is applied to account for parametric uncertainty in the frame of interactive multi‐objective bioprocess optimization.  相似文献   
6.
In this study, we examined the dependence of surface morphology and spin Seebeck effect (SSE) voltages on the poly[vinylpyrrolidone] (PVP) concentration in polycrystalline Y3Fe5O12 (YIG) ultrathin films on a silicon substrate synthesized by metal-organic decomposition followed by a crystallization process. During fabrication, PVP concentrations of 0.5–2 g were used while all other conditions remained fixed. Atomic force microscopy and grazing incidence X-ray diffraction (XRD) measurements revealed a strong dependence of crystallinity and sample morphology on PVP concentration. The 1-g PVP sample had the smoothest surface, with a root mean square roughness of 0.2 nm, as well as superior bulk uniformity with respect to the shape and intensity of XRD reflection peaks. This was confirmed by scanning electron microscopy measurements of a cross-section of the sample that revealed a uniform film without pores. SSE measurements were performed to obtain the output SSE voltages (VSSE) of all samples, to which a platinum layer was added as a spin-detection layer. Repeatedly, the 1-g PVP sample had the best performance, demonstrating the importance of film crystallinity and morphology in the spin-to-charge conversion efficiency of YIG films.  相似文献   
7.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
8.
The formation of artificial metal base pairs is an alluring and versatile method for the functionalization of nucleic acids. Access to DNA functionalized with metal base pairs is granted mainly by solid-phase synthesis. An alternative, yet underexplored method, envisions the installation of metal base pairs through the polymerization of modified nucleoside triphosphates. Herein, we have explored the possibility of using thiolated and pKa-perturbed nucleotides for the enzymatic construction of artificial metal base pairs. The thiolated nucleotides S2C, S6G, and S4T as well as the fluorinated analogue 5FU are readily incorporated opposite a templating S4T nucleotide through the guidance of metal cations. Multiple incorporation of the modified nucleotides along with polymerase bypass of the unnatural base pairs are also possible under certain conditions. The thiolated nucleotides S4T, S4T, S2C, and S6G were also shown to be compatible with the synthesis of modified, high molecular weight single-stranded (ss)DNA products through TdT-mediated tailing reactions. Thus, sulfur-substitution and pKa perturbation represent alternative strategies for the design of modified nucleotides compatible with the enzymatic construction of metal base pairs.  相似文献   
9.
Resilience in river ecosystems requires that organisms must persist in the face of highly dynamic hydrological and geomorphological variations. Disturbance events such as floods and droughts are postulated to shape life history traits that support resilience, but river management and conservation would benefit from greater understanding of the emergent effects in communities of river organisms. We unify current knowledge of taxonomic‐, phylogenetic‐, and trait‐based aspects of river communities that might aid the identification and quantification of resilience mechanisms. Temporal variations in river productivity, physical connectivity, and environmental heterogeneity resulting from floods and droughts are highlighted as key characteristics that promote resilience in these dynamic ecosystems. Three community‐wide mechanisms that underlie resilience are (a) partitioning (competition/facilitation) of dynamically varying resources, (b) dispersal, recolonization, and recruitment promoted by connectivity, and (c) functional redundancy in communities promoted by resource heterogeneity and refugia. Along with taxonomic and phylogenetic identity, biological traits related to feeding specialization, dispersal ability, and habitat specialization mediate organism responses to disturbance. Measures of these factors might also enable assessment of the relative contributions of different mechanisms to community resilience. Interactions between abiotic drivers and biotic aspects of resource use, dispersal, and persistence have clear implications for river conservation and management. To support these management needs, we propose a set of taxonomic, phylogenetic, and life‐history trait metrics that might be used to measure resilience mechanisms. By identifying such indicators, our proposed framework can enable targeted management strategies to adapt river ecosystems to global change.  相似文献   
10.
Polystyrene latexes were prepared in the presence of an amino‐containing functional comonomer, N‐(3‐aminopropyl)methacrylamide hydrochloride (APMH), via soap‐free batch emulsion polymerization initiated by the cationic initiator 2,2′‐azobis(2‐amidinopropane) dihydrochloride. These latexes were characterized by studying the influence of the ionic comonomers on the polymerization kinetics, particle size, surface charge density and colloidal properties. The synthesized latexes were monodisperse with a final size between 100 and 600 nm depending on the APMH concentration. The initial polymerization rate and the particle number increased in accordance with the Smith–Ewart theory for soap‐free styrene emulsion polymerization with a hydrophilic functional comonomer. The final functionalization rate of the particles has been particularly studied with the intention of fitting the prepared latexes to be used in the immobilization of biological molecules for biological sample preparation and diagnostic applications. © 2020 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号