首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12433篇
  免费   1248篇
  国内免费   36篇
工业技术   13717篇
  2023年   119篇
  2022年   75篇
  2021年   318篇
  2020年   297篇
  2019年   377篇
  2018年   431篇
  2017年   392篇
  2016年   512篇
  2015年   456篇
  2014年   589篇
  2013年   905篇
  2012年   826篇
  2011年   994篇
  2010年   759篇
  2009年   740篇
  2008年   703篇
  2007年   558篇
  2006年   519篇
  2005年   438篇
  2004年   404篇
  2003年   383篇
  2002年   329篇
  2001年   269篇
  2000年   210篇
  1999年   228篇
  1998年   352篇
  1997年   263篇
  1996年   201篇
  1995年   157篇
  1994年   128篇
  1993年   90篇
  1992年   72篇
  1991年   68篇
  1990年   73篇
  1989年   66篇
  1988年   48篇
  1987年   53篇
  1986年   53篇
  1985年   39篇
  1984年   29篇
  1983年   32篇
  1982年   9篇
  1981年   20篇
  1980年   21篇
  1979年   11篇
  1978年   13篇
  1977年   18篇
  1976年   28篇
  1975年   10篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Coptidis Rhizoma is the dried rhizome from the Coptis chinensis Franch. that has been shown to have a number of beneficial pharmacological properties including antioxidant, anti-inflammatory, and anti-cancer effects. However, the anti-cancer effects of Coptidis Rhizoma on hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the anti-cancer properties of Coptidis Rhizoma ethanol extract (CR) in HCC Hep3B cells and in a xenograft mouse model. Our results showed that the CR significantly inhibited cell growth and induced apoptosis in Hep3B cells through increased expression of Bcl-2 associated x-protein (Bax) and cleavage of poly-ADP ribose polymerase (PARP), reduced expression of Bcl-2, and activated caspases. CR also increased the generation of intracellular reactive oxygen species (ROS), which caused a loss of mitochondrial membrane potential (MMP, ΔΨm) and activation of the mitochondria-mediated intrinsic apoptosis pathway. Moreover, N-acetylcysteine (NAC), a ROS inhibitor, markedly blocked the effects of CR on apoptotic pathways. CR also induced the expression of light chain 3 (LC3)-I/II, a key autophagy regulator, whereas CR-mediated autophagy was significantly suppressed by NAC. In addition, pre-treatment with NAC perfectly attenuated the inhibition of cell invasion and migration of CR-stimulated Hep3B cells. Furthermore, oral administration of CR suppressed Hep3B tumor growth in xenograft mice without toxicity, alterations to body weight, or changes in hematological and biochemical profiles. Taken together, our findings suggest that CR has anti-tumor effects that result from ROS generation, and may be a potential pharmacological intervention for HCC.  相似文献   
2.
Gene therapy research has advanced to clinical trials, but it is hampered by unstable nucleic acids packaged inside carriers and there is a lack of specificity towards targeted sites in the body. This study aims to address gene therapy limitations by encapsidating a plasmid synthesizing a short hairpin RNA (shRNA) that targets the anti-apoptotic Bcl-2 gene using truncated hepatitis B core antigen (tHBcAg) virus-like particle (VLP). A shRNA sequence targeting anti-apoptotic Bcl-2 was synthesized and cloned into the pSilencer 2.0-U6 vector. The recombinant plasmid, namely PshRNA, was encapsidated inside tHBcAg VLP and conjugated with folic acid (FA) to produce FA-tHBcAg-PshRNA VLP. Electron microscopy revealed that the FA-tHBcAg-PshRNA VLP has an icosahedral structure that is similar to the unmodified tHBcAg VLP. Delivery of FA-tHBcAg-PshRNA VLP into HeLa cells overexpressing the folate receptor significantly downregulated the expression of anti-apoptotic Bcl-2 at 48 and 72 h post-transfection. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells’ viability was significantly reduced from 89.46% at 24 h to 64.52% and 60.63%, respectively, at 48 and 72 h post-transfection. As a conclusion, tHBcAg VLP can be used as a carrier for a receptor-mediated targeted delivery of a therapeutic plasmid encoding shRNA for gene silencing in cancer cells.  相似文献   
3.
This article presents a design methodology for linearizing GaN HEMT amplifiers based on splitting a large FET into multiple parallel FETs with same total gate periphery and by biasing them individually. By varying the biases, the magnitude and the phase of the IMD3 components at the output of FET changes. A detailed simulation methodology using commercial microwave CAD software is presented. Simulation results show that by biasing one device in Class AB and other(s) in deep Class AB mode, IMD3 components of parallel FETs can be made out of phase to each other leading to cancellation and improvement in linearity. Three prototype circuits were simulated using (a) a single 5 mm FET (1 × 5 mm), (b) two parallel 2.5 mm FETs (2 × 2.5 mm), and (c) four parallel 1.25 mm FETs (4 × 1.25 mm), for a total gate periphery of 5 mm, over the frequency range of 0.8 to 1.0 GHz. IMD3 improvement up to 20 dBc was achieved with the 4 × 1.25 mm circuit when the FET biases were optimized. Measurement results show improvement in linearity up to 20 dBc for 4 × 1.25 mm circuit. The proposed method improves linearity without a substantial penalty on the power consumption and is straightforward to implement.  相似文献   
4.
5.
Food Science and Biotechnology - A new analytical method was developed for the simultaneous determination of seven food additives (Ponceau 4R, Allura Red AC, Amaranth, 4-hydroxymethyl benzoic acid,...  相似文献   
6.
7.
Current immunosensors have an insufficient number of binding sites for the recognition of biomolecules, which leads to false positive or negative results. In this research, a facile, cost‐effective, disposable, and highly selective electrochemical immunosensing platform is developed based on cationic polyelectrolyte polyallylamine (PAAMI) anchored laser‐ablated graphene (LAG). Here, for the first time, PAAMI is introduced to stabilize LAG flakes, while retaining the intrinsic thermal and electronic properties of the substrate by noncovalent π–π interaction and electrostatic physical absorption. The sensing platform offers a suitable number of anchoring sites for the immobilized antibodies by providing ? NH2 functional groups. The proper grafting of PAAMI is confirmed through X‐ray photoelectron spectroscopy and Raman spectroscopy. The immunosensing platform is applied to detect immunoglobulin (IgG) biomarkers as a proof of concept. Under optimized conditions, the sensing platform exhibits a linear range of 0.012–15 and 15–352 ng mL?1 with a limit of detection of 6 pg mL?1 for IgG detection with high selectivity. Based on the analysis, the developed immunosensing platform can be used for point‐of‐care detection of IgG in clinical diagnostic centers. Furthermore, the developed strategy is well suited for the detection of other cancer biomarkers after immobilizing the relevant antibodies.  相似文献   
8.
Chan  Ho Fai  Mixon  Franklin G.  Torgler  Benno 《Scientometrics》2019,118(2):605-615
Scientometrics - Although scientists, like many other professionals, aspire to fame and recognition, research in the emergent field of fame and celebrity has as yet neglected to explore their fame...  相似文献   
9.
Scanning probe lithography is used to directly pattern monolayer transition metal dichalcogenides (TMDs) without the use of a sacrificial resist. Using an atomic‐force microscope, a negatively biased tip is brought close to the TMD surface. By inducing a water bridge between the tip and the TMD surface, controllable oxidation is achieved at the sub‐100 nm resolution. The oxidized flake is then submerged into water for selective oxide removal which leads to controllable patterning. In addition, by changing the oxidation time, thickness tunable patterning of multilayer TMDs is demonstrated. This resist‐less process results in exposed edges, overcoming a barrier in traditional resist‐based lithography and dry etch where polymeric byproduct layers are often formed at the edges. By patterning monolayers into geometric patterns of different dimensions and measuring the effective carrier lifetime, the non‐radiative recombination velocity due to edge defects is extracted. Using this patterning technique, it is shown that selenide TMDs exhibit lower edge recombination velocity as compared to sulfide TMDs. The utility of scanning probe lithography towards understanding material‐dependent edge recombination losses without significantly normalizing edge behaviors due to heavy defect generation, while allowing for eventual exploration of edge passivation schemes is highlighted, which is of profound interest for nanoscale electronics and optoelectronics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号