首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   13篇
  国内免费   2篇
工业技术   421篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   16篇
  2015年   15篇
  2014年   18篇
  2013年   35篇
  2012年   39篇
  2011年   32篇
  2010年   26篇
  2009年   29篇
  2008年   34篇
  2007年   16篇
  2006年   12篇
  2005年   11篇
  2004年   14篇
  2003年   10篇
  2002年   12篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   7篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1969年   3篇
  1938年   3篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
1.
The negative environmental impacts of burning fossil fuels have forced the energy research community seriously to consider renewable sources, such as naturally available solar energy. This paper provides an overview of solar thermoelectric (TE) cooling systems. Thus, this review presents the details referring to TE cooling parameters and formulations of the performance indicators and focuses on the development of TE cooling systems in recent decade with particular attention on advances in materials and modeling and design approaches. Additionally, the TE cooling applications have been also reviewed in aspects of electronic cooling, domestic refrigeration, air conditioning, and power generation. Finally, the possibility of solar TE cooling technologies application in “nearly zero” energy buildings is briefly discussed, and some future research directions are included. This research shows that TE cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes.  相似文献   
2.
Zirconia-toughened alumina (ZTA) is the gold-standard ceramic in hip arthroplasty, but still lacks direct osseointegration and a metal shell, often coated with a bioactive layer, is currently required. The latter could potentially be replaced by a thinner, architectured ZTA layer, thereby allowing for larger acetabular components, with larger range of motion and lower dislocation risk. Robocasting may be an adequate technique to fabricate the architectured layer. Therefore, as a first step, this study aimed to produce ZTA scaffolds (3D-ZTA) by robocasting and assess their in vitro response. Shape retention was achieved by using a stable, well-dispersed, high solid loading ink injected in acid pH waterbath. 3D-ZTA exhibit regularly spaced microporous, rough struts and fully interconnected macroporosity. Human primary osteoblasts were homogenously distributed inside 3D-ZTA and showed increased osteogenic marker expression compared to 2D-ZTA control. Further work will focus on optimizing scaffold design to improve cell retention and extracellular matrix maturation.  相似文献   
3.
4.
In recent years, vegetable oils, as renewable raw materials, became a promising feedstock for chemicals and biodiesel production. The main products derived from oils are esters of fatty acids, especially methyl esters, obtained by their transesterification with methanol, in presence of acid or alkaline catalysts. The use of such catalysts implies the need for washing operations, which leads to environmental pollution. In the present paper, the response surface methodology based on a central composite design, has been developed to optimize the process of transesterification of corn oil. Ba(OH)2 in presence of diethyl ether was used as catalyst. A quadratic polynomial equation was obtained. It correlates the reaction parameters [methanol/oil molar ratio (x r), reaction time (x t) and catalyst concentration (x c)] with methyl esters yield. Analysis of variance analysis showed that only methanol/oil molar ratio and catalyst concentration have had the most significant influences on the conversion. The maximum methyl esters yield was obtained using the following optimum parameters: methanol/corn oil ratio of 11.32, reaction time of 118 min and catalyst concentration of 3.6 wt%.  相似文献   
5.
Although apparently simple, the polycondensation reaction leading to polyazomethine is difficult to control because of its equilibrium character, the conversion degree being influenced by a series of parameters. The reaction between a siloxanediamine, 1,3‐bis(3‐aminopropyl)tetramethyldisiloxane, and terephthalaldehyde was performed here in solution (in tetrahydrofuran) without by‐products removal and in absence of any catalyst or pH modifier. Different conditions (co‐monomers ratio, dilution, and temperature), considered as input parameters for the process modeling, were varied according to a pre‐established experimental program. The viscosity of the reaction mixture was chosen as output parameter, being monitored with a Haake Viscotester 7 Plus‐L. The process modeling was performed using a hybrid combination of artificial neural networks and differential evolution algorithm, the last one having the role of developing the neural model in an optimal form. The simulation results showed that the methodology provides accurate results, the model predictions being in close correlation with the experimental data. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42552.  相似文献   
6.
Monitoring partial vapor pressure in the freeze-drying chamber is a cheap, global, and non-intrusive way to assess the end of the primary drying stage. Most existing dynamic freeze-drying models which predict this partial pressure describe mass transfer between the product and the condenser via a mass transfer resistance or a mass transfer coefficient. Experimental evidence suggests that such models can be significantly in error for some values of the sublimation flux, leading to physically inconsistent predictions and possibly incorrect assessment of primary drying termination, with potential risk of product damage if moving to secondary drying and increasing shelf temperature while some ice is still present. Assuming a binary gas transport model for vapor and inert gas leads to improved and consistent predictions and explains the apparent variation of the mass transfer resistance with total pressure, shelf temperature, and product sublimation area.  相似文献   
7.
A lamellar lyotropic liquid crystal genistein-based formulation (LLC-Gen) was prepared in order to increase the aqueous solubility of the lipophilic phytocompound genistein. The formulation was applied locally, in a murine model of melanoma, with or without electroporation. The results demonstrated that, when the formulation was applied by electroporation, the tumors appeared later. During the 21 days of the experiment, the LLC-Gen formulation decreased the tumor volume, the amount of melanin and the degree of erythema, but when electroporation was applied, all these parameters indicated a better prognosis even (lower tumor volume, amount of melanin and degree of erythema). Although hematoxylin–eosin (HE) staining confirmed the above events, application of the LLC-Gen formulation by electroporation did not lead to a significant effect in terms of the serum concentrations of the protein S100B and serum neuron specific enolase (NSE), or the tissue expression of the platelet-derived growth factor receptor β (PDGFRβ) antibody.  相似文献   
8.
In freeze drying, the desorption step for reaching a low target moisture content may take a significant fraction of the total process duration. Because the long-term stability of freeze-dried biological products strongly depends on the current moisture content, modeling the desorption process may help safely optimize the secondary drying step. Most published models assume a first-order desorption kinetic, but experimental evidence shows that strongly bound water in the monolayer takes a much longer time to be desorbed than less bound water in multilayer. The proposed model for desorption of freeze-dried lactic acid bacteria preparation accounts for monolayer and multilayer water state in the solid matrix, with very different desorption kinetics. Results showed that the ratio of characteristic desorption times (monolayer/multilayer) was almost 30. Temperature dependence was adequately described by an Arrhenius law in the range of 15 to 40°C. Model parameter identification used simultaneously gravimetric measurements with high time resolution and direct Karl-Fisher titration, from several experiments at different, time-varying temperatures.  相似文献   
9.
Abstract

The interaction of tBu-calix[8]arene with C60 and C70 in the 1:1 and 1:2 models have been investigated by means of molecular dynamics and molecular mechanics (CVFF91 force field) calculations. The results reveal that one C60 molecule can be encapsulated in the cavity of the calixarene which adopts a conformation with six phenyl groups oriented upward and the other two (1 and 5) outward. The relatively weak bonded 1:1 C60-calixarene system is a result of attractive π…H(C-tBu. C-methylene) and repulsive π…π interactions. C70, more voluminous than C60 can not be accommodated in the cavity of the calixarcnc and forces it to a relatively opened conformation where the number of atractive interactions is less than in the C60-calixarene system. This conformation allows however the interaction with a second molecule and thus 1:2 adducts are formed. Thus, if proper substituents are on the calixarene and the fullerene size permite the encapsulation, 1:1 complexes are obtainable while if the fullerene size is larger than the cavity of the calixarene can cope with, only the 1:2 adducts can be separated.

  相似文献   
10.
Various materials are commonly used to manufacture work rolls for hot rolling mills, such as ICDP (Indefinite Chill Double Pour) cast irons, high-chromium white cast irons, and high speed steels (HSS). Various chemical compositions and microstructures are studied in order to optimize the in-use behavior of those grades of rolls. In this paper, six grades of ferrous alloys (an ICDP cast iron; an ICDP cast iron enriched in vanadium, niobium, and molybdenum; a HSS; a graphitic HSS; a high-chromium white cast iron (Hi-Cr); and a niobium-molybdenum-doped high-chromium white cast iron) were investigated. High-temperature oxidation tests with gravimetric means at 575 °C in water vapor atmosphere and sliding wear tests were carried out. The oxidation kinetics was followed during oxidation test. The microstructure was observed by optical and scanning electron microscopies. The oxides formed on the surface of the samples were analyzed by XRD and EDS. The thickness of the oxide scales and the mass gain were measured after oxidation test. The results showed that the behavior of all the grades differed. The oxide scale of HSS and HSS-G grades was fine and their friction coefficient was low. The weight gain after oxidation test of HSS was high. Hi-Cr and M-Hi-Cr grades presented highly porous oxide layer and an important increase of the friction coefficient during wear test. ICDP and M-ICDP had intermediate behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号