首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274148篇
  免费   5512篇
  国内免费   1265篇
工业技术   280925篇
  2021年   2266篇
  2020年   1749篇
  2019年   2077篇
  2018年   3715篇
  2017年   3621篇
  2016年   3909篇
  2015年   2924篇
  2014年   4491篇
  2013年   13349篇
  2012年   7662篇
  2011年   9857篇
  2010年   7902篇
  2009年   8400篇
  2008年   9219篇
  2007年   9113篇
  2006年   8108篇
  2005年   7400篇
  2004年   7017篇
  2003年   6867篇
  2002年   6313篇
  2001年   6252篇
  2000年   5612篇
  1999年   6528篇
  1998年   19175篇
  1997年   13113篇
  1996年   9703篇
  1995年   7295篇
  1994年   6407篇
  1993年   6215篇
  1992年   4143篇
  1991年   4115篇
  1990年   3712篇
  1989年   3607篇
  1988年   3511篇
  1987年   2946篇
  1986年   2935篇
  1985年   3533篇
  1984年   3126篇
  1983年   2770篇
  1982年   2608篇
  1981年   2638篇
  1980年   2489篇
  1979年   2296篇
  1978年   2257篇
  1977年   2915篇
  1976年   4468篇
  1975年   1905篇
  1974年   1791篇
  1973年   1792篇
  1972年   1478篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
Inhibition of PSD-95 has emerged as a promising strategy for the treatment of ischemic stroke, as shown with peptide-based compounds that target the PDZ domains of PSD-95. In contrast, developing potent and drug-like small molecules against the PSD-95 PDZ domains has so far been unsuccessful. Here, we explore the druggability of the PSD-95 PDZ1-2 domain and use fragment screening to investigate if this protein is prone to binding small molecules. We screened 2500 fragments by fluorescence polarization (FP) and validated the hits by surface plasmon resonance (SPR), including an inhibition counter-test, and found four promising fragments. Three ligand efficient fragments were shown by 1H,15N HSQC NMR to bind in the small hydrophobic P0 pockets of PDZ1-2, and one of them underwent structure-activity relationship (SAR) studies. Overall, we demonstrate that fragment screening can successfully be applied to PDZ1-2 of PSD-95 and disclose novel fragments that can serve as starting points for optimization towards small-molecule PDZ domain inhibitors.  相似文献   
3.
Chameleonic properties, i. e., the capacity of a molecule to hide polarity in non-polar environments and expose it in water, help achieving sufficient permeability and solubility for drug molecules with high MW. We present models of experimental measures of polarity for a set of 24 FDA approved drugs (MW 405-1113) and one PROTAC (MW 1034). Conformational ensembles in aqueous and non-polar environments were generated using molecular dynamics. A linear regression model that predicts chromatographic apparent polarity (EPSA) with a mean unsigned error of 10 Å2 was derived based on separate terms for donor, acceptor, and total molecular SASA. A good correlation (R2=0.92) with an experimental measure of hydrogen bond donor potential, Δlog Poct-tol, was found for the mean hydrogen bond donor SASA of the conformational ensemble scaled with Abraham's A hydrogen bond acidity. Two quantitative measures of chameleonic behaviour, the chameleonic efficiency indices, are introduced. We envision that the methods presented herein will be useful to triage designed molecules and prioritize those with the best chance of achieving acceptable permeability and solubility.  相似文献   
4.
5.
An improved glucose-chelator-albumin bioconjugate (GluCAB) derivative, GluCAB-2Mal, has been synthesized and studied for in vivo 64Cu-PET/CT imaging in breast cancer mice models together with its first-generation analogue GluCAB-1Mal. The radioligand works on the principle of tumor targeting through the enhanced permeability and retention (EPR) effect with a supportive role played by glucose metabolism. [64Cu]Cu-GluCAB-2Mal (99 % RCP) exhibited high serum stability with immediate binding to serum proteins. In vivo experiments for comparison between tumor targeting of [64Cu]Cu-GluCAB-2Mal and previous-generation [64Cu]Cu-GluCAB-1Mal encompassed microPET/CT imaging and biodistribution analysis in an allograft E0771 breast cancer mouse model. Tumor uptake of [64Cu]Cu-GluCAB-2Mal was clearly evident with twice as much accumulation as compared to its predecessor and a tumor/muscle ratio of up to 5 after 24 h. Further comparison indicated a decrease in liver accumulation for [64Cu]Cu-Glu-CAB-2Mal.  相似文献   
6.
Novel lead-free (1-x)Ba0·9Ca0·1Ti0·9Zr0·1O3-xSrNb2O6 ceramics were synthesized via a two-step high energy ball milling process. The evolution of microstructural properties, phase transformation, and energy storage characteristics was comprehensively investigated to assess the applicability of material in multi-layered ceramic capacitors. The substitution of SrNb2O6 (SNO) in Ba0·9Ca0·1Ti0·9Zr0·1O3 (BTCZ) has resulted in substantial improvement in materials density along with a small increase in the grain size of the synthesized ceramic. A thorough microstructural investigation indicates an excellent dispersibility and compatibility between BTCZ and SNO phases. With an increase in SNO substitution, a transition from typical ferroelectric to relaxor ferroelectric has been observed, which has led to a significantly slimmer ferroelectric loop along with frequency dispersive dielectric properties. The optimized composition (i.e., x = 0.10) exhibits an ultra-high recoverable energy density of 2.68 J/cm3 along with a moderately high energy efficiency of 83.4%. Further, SNO substituted samples have also shown an enhancement in breakdown strength. The improvement in energy storage performance and breakdown strength of SNO substituted BTCZ composites are mainly attributed to relatively homogeneous grain morphology, optimum grain size, microstructural density, and improved grain boundary interface.  相似文献   
7.
In the current study two different batches of X7R-0603 BME-MLCCs displayed dissimilar electrical performance, despite having the same chemical composition, tape casting, and sintering conditions; with the only difference between them being the ore deposits where the raw materials were extracted from to synthesize the BaTiO3. Specifically, they presented different electrical response to highly accelerated life tests (HALT). Although the chemical analysis of each slip showed the same composition, the trace elements of the BaTiO3 sources could have acted as dopants or produced different secondary phases. A search for precipitates in the two samples was conducted by means of Scanning (SEM) and Transmission Electron Microscopy (TEM) techniques. SEM observations confirmed the presence of precipitates formed within the structure of the MLCCs exhibiting the greatest decrement in their electrical resistance results during the HALT. In order to further characterize the observed precipitates, samples were prepared by Focused Ion Beam (FIB) lift-out method, to make TEM characterization of specific precipitates feasible. TEM studies were performed on the precipitates to obtain electron diffraction patterns and complementary Energy Dispersive X-Ray Spectroscopy (EDXS) chemical analysis. Based on the crystal and chemical data obtained, it can be concluded that the precipitates are a hexagonal anhydrous silicate oxyapatite phase with a stoichiometry of Ca3Y16Si10O13, and lattice parameters of a = 0.9353 nm and c = 0.6970 nm; this phase was not found in the JCPDS data base. Differences in raw materials coming from different ore deposits can produce undesired precipitates that affect the electrical performance of MLCCs.  相似文献   
8.
Free fatty acid receptor 2 (FFA2) is a sensor for short-chain fatty acids that has been identified as an interesting potential drug target for treatment of metabolic and inflammatory diseases. Although several ligand series are known for the receptor, there is still a need for improved compounds. One of the most potent and frequently used antagonists is the amide-substituted phenylbutanoic acid known as CATPB ( 1 ). We here report the structure-activity relationship exploration of this compound, leading to the identification of homologues with increased potency. The preferred compound 37 (TUG-1958) was found, besides improved potency, to have high solubility and favorable pharmacokinetic properties.  相似文献   
9.
Malek  S.  Pajouh  H. Hakimi 《Semiconductors》2021,55(3):301-307
Semiconductors - The propagation of solitary acoustic pulses in magnetized quantum electron–hole plasmas of semiconductors has been studied. The effects of an external magnetic field and...  相似文献   
10.
Journal of Communications Technology and Electronics - A magnetic system is developed to generate a stationary uniform magnetic field in a relatively large region between the poles of a magnet that...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号