首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2175篇
  免费   98篇
  国内免费   15篇
工业技术   2288篇
  2023年   38篇
  2022年   68篇
  2021年   78篇
  2020年   67篇
  2019年   66篇
  2018年   78篇
  2017年   81篇
  2016年   83篇
  2015年   51篇
  2014年   79篇
  2013年   171篇
  2012年   105篇
  2011年   120篇
  2010年   102篇
  2009年   97篇
  2008年   89篇
  2007年   79篇
  2006年   73篇
  2005年   43篇
  2004年   46篇
  2003年   38篇
  2002年   40篇
  2001年   38篇
  2000年   24篇
  1999年   26篇
  1998年   42篇
  1997年   42篇
  1996年   27篇
  1995年   24篇
  1994年   31篇
  1993年   29篇
  1992年   16篇
  1991年   20篇
  1990年   11篇
  1989年   8篇
  1988年   10篇
  1987年   11篇
  1986年   19篇
  1985年   20篇
  1984年   22篇
  1983年   16篇
  1982年   16篇
  1981年   22篇
  1980年   19篇
  1979年   17篇
  1978年   16篇
  1977年   16篇
  1976年   15篇
  1975年   8篇
  1972年   5篇
排序方式: 共有2288条查询结果,搜索用时 15 毫秒
1.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
2.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
3.
An explicit extraction of the retinal vessel is a standout amongst the most significant errands in the field of medical imaging to analyze both the ophthalmological infections, for example, Glaucoma, Diabetic Retinopathy (DR), Retinopathy of Prematurity (ROP), Age-Related Macular Degeneration (AMD) as well as non retinal sickness such as stroke, hypertension and cardiovascular diseases. The state of the retinal vasculature is a significant indicative element in the field of ophthalmology. Retinal vessel extraction in fundus imaging is a difficult task because of varying size vessels, moderately low distinction, and presence of pathologies such as hemorrhages, microaneurysms etc. Manual vessel extraction is a challenging task due to the complicated nature of the retinal vessel structure, which also needs strong skill set and training. In this paper, a supervised technique for blood vessel extraction in retinal images using Modified Adaboost Extreme Learning Machine (MAD-ELM) is proposed. Firstly, the fundus image preprocessing is done for contrast enhancement and in-homogeneity correction. Then, a set of core features is extracted, and the best features are selected using “minimal Redundancy-maximum Relevance (mRmR).” Later, using MAD-ELM method vessels and non vessels are classified. DRIVE and DR-HAGIS datasets are used for the evaluation of the proposed method. The algorithm’s performance is assessed based on accuracy, sensitivity and specificity. The proposed technique attains accuracy of 0.9619 on the DRIVE database and 0.9519 on DR-HAGIS database, which contains pathological images. Our results show that, in addition to healthy retinal images, the proposed method performs well in extracting blood vessels from pathological images and is therefore comparable with state of the art methods.  相似文献   
4.
5.
6.
A transformational approach for proving termination of parallel logic programs such as GHC programs is proposed. A transformation from GHC programs to term rewriting systems is developed; it exploits the fact that unifications in GHC-resolution correspond to matchings. The termination of a GHC program for a class of queries is implied by the termination of the resulting rewrite system. This approach facilitates the applicability of a wide range of termination techniques developed for rewrite systems in proving termination of GHC programs. The method consists of three steps: (a) deriving moding information from a given GHC program, (b) transforming the GHC program into a term rewriting system using the moding information, and finally (c) proving termination of the resulting rewrite system. Using this method, the termination of many benchmark GHC programs such as quick-sort, merge-sort, merge, split, fair-split and append, etc., can be proved. This is a revised and extended version of Ref. 12). The work was partially supported by the NSF Indo-US grant INT-9416687 Kapur was partially supported by NSF Grant nos. CCR-8906678 and INT-9014074. M. R. K. Krishna Rao, Ph.D.: He currently works as a senior research fellow at Griffith University, Brisbane, Australia. His current interests are in the areas of logic programming, modular aspects and noncopying implementations of term rewriting, learning logic programs from examples and conuterexamples and dynamics of mental states in rational agent architectures. He received his Ph.D in computer science from Tata Institute of Fundamental Research (TIFR), Bombay in 1993 and worked at TIFR and Max Planck Institut für Informatik, Saarbrücken until January 1997. Deepak Kapur, Ph.D.: He currently works as a professor at the State University of New York at Albany. His research interests are in the areas of automated reasoning, term rewriting, constraint solving, algebraic and geometric reasoning and its applications in computer vision, symbolic computation, formal methods, specification and verification. He obtained his Ph.D. in Computer Science from MIT in 1980. He worked at General Electric Corporate Research and Development until 1987. Prof. Kapur is the editor-in-chief of the Journal of Automated Reasoning. He also serves on the editorial boards of Journal of Logic Programming, Journal on Constraints, and Journal of Applicable Algebra in Engineering, Communication and Computer Science. R. K. Shyamasundar, Ph.D.: He currently works as a professor at Tata Institute of Fundamental Research (TIFR), Bombay. His current intersts are in the areas of logic programming, reactive and real time programming, constraint solving, formal methods, specification and verification. He received his Ph.D in computer science from Indian Institute of Science, Bangalore in 1975 and has been a faculty member at Tata Institute of Fundamental Research since then. He has been a visiting/regular faculty member at Technological University of Eindhoven, University of Utrecht, IBM TJ Watson Research Centre, Pennsylvania State University, University of Illinois at Urbana-Champaign, INRIA and ENSMP, France. He has served on (and chaired) Program Committees of many International Conferences and has been on the Editorial Committees.  相似文献   
7.
The saturation capacity of n-alkanes in CHA, AFX and ERI zeolites, that consist of cages separated by windows, decreases with increasing carbon number. The major aim of the present communication is to demonstrate the possibility of separating n-alkane mixtures relying on differences in saturation capacities. To investigate this possibility, Configurational-Bias Monte Carlo simulations for adsorption of C3–nC6, nC4–nC6, and nC5–nC6 mixtures in CHA, AFX and ERI were carried out for equimolar bulk fluid phase. These mixture simulations show that for operation at fluid phase fugacities below about 1 MPa, the adsorbed phase in equilibrium with the bulk vapor phase is predominantly the alkane with the longer chain length, i.e. nC6. However, for operation at pressures in excess of 1 MPa, the adsorbed phase in equilibrium with the bulk liquid phase is richer in the component with the smaller chain length. In some cases, the nC6 is practically excluded from the zeolite.  相似文献   
8.
The reliability of a system is the probability that the system will perform its intended mission under given conditions. This paper provides an overview of the approaches to reliability modelling and identifies their strengths and weaknesses. The models discussed include structure models, simple stochastic models and decomposable stochastic models. Ignoring time-dependence, structure models give reliability as a function of the topological structure of the system. Simple stochastic models make direct use of the properties of underlying stochastic processes, while decomposable models consider more complex systems and analyse them through subsystems. Petri nets and dataflow graphs facilitate the analysis of complex systems by providing a convenient framework for reliability analysis.  相似文献   
9.
10.
A macroscopic, steady state energy balance model has been formulated to describe mixing phenom-ena in a liquid bath stirred by injecting gas through a straight nozzle fitted axially at the bottom of the vessel. This, along with experimental data on a water model previously reported, was employed to make predictions. Input energy terms considered in the model consist of buoyancy energy and empirically determined fraction of gas kinetic energy. Dissipation of energy was attributed to liquid circulation and bubble slip. The two-phase plume was assumed to be a truncated cone whose dimen-sions depended upon operating conditions. Numerical solution of model equations gave liquid velocity and gas hold-up inside the plume as well as liquid circulation rate and liquid velocity in the region outside the plume. Influence of process variables, e.g., gas flow rate, bath height, and nozzle diameter, have been predicted. Validity of the model has been established by comparing some pre-dicted entrainment ratios with those experimentally measured by other investigators. Empirical cor-relations to predict circulation time and circulation number have been proposed. Circulation number was found to vary between 2 and 12 in contrast to the existing assumption in the literature of a con-stant value of 3. Usefulness of these correlations in predicting mixing time for industrial vessels has been demonstrated. Formerly a Graduate Student in the De-partment of Metallurgical Engineering at the Indian Institute of Technol-ogy, Kanpur  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号