首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18174篇
  免费   780篇
  国内免费   143篇
工业技术   19097篇
  2023年   94篇
  2022年   143篇
  2021年   365篇
  2020年   269篇
  2019年   320篇
  2018年   389篇
  2017年   368篇
  2016年   434篇
  2015年   373篇
  2014年   535篇
  2013年   1047篇
  2012年   838篇
  2011年   924篇
  2010年   791篇
  2009年   767篇
  2008年   799篇
  2007年   764篇
  2006年   630篇
  2005年   583篇
  2004年   474篇
  2003年   460篇
  2002年   408篇
  2001年   381篇
  2000年   363篇
  1999年   407篇
  1998年   1119篇
  1997年   711篇
  1996年   526篇
  1995年   427篇
  1994年   352篇
  1993年   348篇
  1992年   200篇
  1991年   177篇
  1990年   173篇
  1989年   171篇
  1988年   148篇
  1987年   119篇
  1986年   125篇
  1985年   166篇
  1984年   124篇
  1983年   114篇
  1982年   85篇
  1981年   102篇
  1980年   104篇
  1979年   95篇
  1978年   57篇
  1977年   122篇
  1976年   162篇
  1975年   54篇
  1973年   61篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
The interactions of amino acids and peptides at model membrane interfaces have considerable implications for biological functions, with the ability to act as chemical messengers, hormones, neurotransmitters, and even as antibiotics and anticancer agents. In this study, glycine and the short glycine peptides diglycine, triglycine, and tetraglycine are studied with regards to their interactions at the model membrane interface of Aerosol-OT (AOT) reverse micelles via 1H NMR spectroscopy, dynamic light scattering (DLS), and Langmuir trough measurements. It was found that with the exception of monomeric glycine, the peptides prefer to associate between the interface and bulk water pool of the reverse micelle. Monomeric glycine, however, resides with the N-terminus in the ordered interstitial water (stern layer) and the C-terminus located in the bulk water pool of the reverse micelle.  相似文献   
3.
4.
Fan  Deng-Ping  Huang  Ziling  Zheng  Peng  Liu  Hong  Qin  Xuebin  Van Gool  Luc 《国际自动化与计算杂志》2022,19(4):257-287
Machine Intelligence Research - This paper aims to conduct a comprehensive study on facial-sketch synthesis (FSS). However, due to the high cost of obtaining hand-drawn sketch datasets, there is a...  相似文献   
5.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
6.
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.  相似文献   
7.
A novel sandwich-like structure was first proposed to adjust the electrical properties of NTC thermistors. The LaCr0.7Fe0.3O3-NiMn2O4 supported composite ceramics with sandwich-like structure were initially fabricated via traditional solid-state reaction and uniaxial pressing methods, which allowed for the advantages of each component to be integrated into one material. X-Ray diffraction analysis indicates the ceramics mainly consisting of orthorhombic perovskite LaCr0.7Fe0.3O3 and cubic spinel NiMn2O4 phases. SEM images manifest that the three layers adhered well to each other and exhibited high density. For electrical properties, the ρ25°C was expanded to a wide range of 1182–110,233 Ω?cm and could be adjusted to the desired values by tuning the volume ratio of two basic layers, the B value was enhanced from 3358 K to 4167 K by NiMn2O4, and the thermal stability was improved by LaCr0.7Fe0.3O3 with a resistance shift less than 0.55 % after annealing at 150 °C for 1500 h.  相似文献   
8.
The structure of mold flux glasses in the system CaO-(Na,Li)2O-SiO2-CaF2 with unusually high modifier contents, stabilized by the addition of ∼4 mol% B2O3, is studied using 7Li, 23Na, 19F, 11B, and 29Si magic-angle-spinning (MAS), and 7Li{19F} and 23Na{19F} rotational echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. When taken together, the spectroscopic results indicate that the structure of these glasses consists primarily of dimeric [Si2O7]−6 units that are linked to the (Ca,Na,Li)-O coordination polyhedra, and are interspersed with chains of corner-shared BO3 units. The F atoms in the structure are exclusively bonded to Ca atoms, forming Ca(O,F)n coordination polyhedra. This structural scenario is shown to be consistent with the crystallization of cuspidine (3CaO·2SiO2·CaF2) from the parent melts on slow supercooling. The progressive addition of Li to a Na-containing base composition results in a corresponding increase in the undercooling required for the nucleation of cuspidine in the melt, which is attributed to the frustrated local structure caused by the mixing of alkali ions.  相似文献   
9.
In this study, we examined the dependence of surface morphology and spin Seebeck effect (SSE) voltages on the poly[vinylpyrrolidone] (PVP) concentration in polycrystalline Y3Fe5O12 (YIG) ultrathin films on a silicon substrate synthesized by metal-organic decomposition followed by a crystallization process. During fabrication, PVP concentrations of 0.5–2 g were used while all other conditions remained fixed. Atomic force microscopy and grazing incidence X-ray diffraction (XRD) measurements revealed a strong dependence of crystallinity and sample morphology on PVP concentration. The 1-g PVP sample had the smoothest surface, with a root mean square roughness of 0.2 nm, as well as superior bulk uniformity with respect to the shape and intensity of XRD reflection peaks. This was confirmed by scanning electron microscopy measurements of a cross-section of the sample that revealed a uniform film without pores. SSE measurements were performed to obtain the output SSE voltages (VSSE) of all samples, to which a platinum layer was added as a spin-detection layer. Repeatedly, the 1-g PVP sample had the best performance, demonstrating the importance of film crystallinity and morphology in the spin-to-charge conversion efficiency of YIG films.  相似文献   
10.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号