首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3993篇
  免费   279篇
  国内免费   4篇
工业技术   4276篇
  2023年   56篇
  2022年   41篇
  2021年   132篇
  2020年   117篇
  2019年   115篇
  2018年   140篇
  2017年   126篇
  2016年   139篇
  2015年   108篇
  2014年   177篇
  2013年   260篇
  2012年   228篇
  2011年   297篇
  2010年   193篇
  2009年   178篇
  2008年   189篇
  2007年   174篇
  2006年   158篇
  2005年   99篇
  2004年   117篇
  2003年   74篇
  2002年   93篇
  2001年   38篇
  2000年   31篇
  1999年   45篇
  1998年   102篇
  1997年   70篇
  1996年   43篇
  1995年   48篇
  1994年   29篇
  1993年   35篇
  1992年   26篇
  1991年   17篇
  1990年   26篇
  1989年   23篇
  1988年   20篇
  1987年   16篇
  1986年   16篇
  1985年   32篇
  1984年   29篇
  1983年   36篇
  1982年   46篇
  1981年   44篇
  1980年   21篇
  1979年   33篇
  1978年   23篇
  1977年   27篇
  1976年   40篇
  1975年   18篇
  1974年   22篇
排序方式: 共有4276条查询结果,搜索用时 15 毫秒
1.
The structural diversity of polyphenols and the inherent limitations of current extraction techniques pose a challenge to extract polyphenols using a simple and green method. Hence, in this study, a method was developed to simultaneously fractionate multiple classes of polyphenols by only varying ethanol-water solutions. Honeybush tea, which is rich in polyphenols, was selected as a model for this study. Solvent extraction followed by solid-phase extraction (SPE) was developed to obtain a polyphenol-rich fraction from six honeybush samples. Based on a gradient elution programme (10%, 30%, 50%, 70% and 90% (v/v) ethanol-water solution) of SPE, the Strata X cartridge showed a better recovery of most targeted polyphenols under 0.9 mL of the drying volume and 1 mL min−1 of the dispensing speed. The elution programme for fractionating most polyphenols was as follows: single elution with 50% ethanol, followed by twice elution with 70% ethanol. The antioxidant capacity was used to analyse the differences among the polyphenol-rich fractions from six honeybush samples. Principal component analysis (PCA) revealed that unfermented C. genistoides (GG) has the greatest antioxidant capacity among the honeybush species studied. Additionally, mangiferin, isomangiferin and vicenin-2 were the main contributors to the antioxidant capacity in six honeybush fractions according to the correlation study.  相似文献   
2.
In response to the growing interest in offshore wind energy development in California, the U.S. Bureau of Ocean Energy Management delineated three Call Areas for potential leasing. This study provides a comprehensive characterization and comparison of offshore wind power potential within the two Central California Call Areas (Diablo Canyon and Morro Bay) using 12- and 15-MW turbines under different inter-turbine spacing and wind farm size scenarios. Our analysis shows similar daily and seasonal patterns of wind power produced within the Call Areas, which peak in spring and during evening hours. Per-turbine power production is higher in the Morro Bay Call Area due to slightly higher hub-height wind speeds, whereas total power production is higher in the Diablo Canyon Call Area due to its larger size. Turbine type had a negligible impact on average power production per-unit-area because while larger turbines produce more power, they require greater inter-turbine spacing. Combined power production from the two fully built out Call Areas could equal nearly a quarter of California's current annual electrical energy production. A commercial-scale wind farm with a realized power output of 960 MW would require a footprint of at least half of the Morro Bay Call Area or at least a quarter of the Diablo Canyon Call Area. These results provide guidance on offshore wind development over the Central California Coast, and the framework demonstrated here could be applied to other wind data sets in other regions.  相似文献   
3.
4.
Soybean oil hydrogenation alters the linolenic acid molecule to prevent the oil from becoming rancid, however, health reports have indicated trans-fat caused by hydrogenation, is not generally regarded as safe. Typical soybeans contain approximately 80 g kg−1 to 120 g kg−1 linolenic acid and 240 g kg−1 of oleic acid. In an effort to accommodate the need for high-quality oil, the United Soybean Board introduced an industry standard for a high oleic acid greater than 750 g kg−1 and linolenic acid less than 30 g kg−1 oil. By combing mutations in the soybean plant at four loci, FAD2-1A and FAD2-1B, oleate desaturase genes and FAD3A and FAD3C, linoleate desaturase genes, and seed oil will not require hydrogenation to prevent oxidation and produce high-quality oil. In 2017 and 2018, a study comparing four near-isogenic lines across multiple Tennessee locations was performed to identify agronomic traits associated with mutations in FAD3A and FAD3C loci, while holding FAD2-1A and FAD2-1B constant in the mutant (high oleic) state. Soybean lines were assessed for yield and oil quality based on mutations at FAD2-1 and FAD3 loci. Variations of wild-type and mutant genotypes were compared at FAD3A and FAD3C loci. Analysis using a generalized linear mixed model in SAS 9.4, indicated no yield drag or other negative agronomic traits associated with the high oleic and low linolenic acid genotype. All four mutations of fad2-1A, fad2-1B, fad3A, and fad3C were determined as necessary to produce a soybean with the new industry standard (>750 g kg−1 oleic and <30 g kg−1 linolenic acid) in a maturity group-IV-Late cultivar for Tennessee growers.  相似文献   
5.
In the near-to-medium future, hydrogen production will continue to rely on reforming of widely available and relatively low-cost fossil resources. A techno-economic framework is described that compares the current best practice steam methane reforming (SMR) with potential pathways for low-CO2 hydrogen production; (i) Electrolysis coupled to sustainable renewable electricity sources; (ii) Reforming of hydrocarbons coupled with carbon capture and sequestration (CCS) and; (iii) Thermal dissociation of hydrocarbons into hydrogen and carbon (pyrolysis). For methane pyrolysis, a process based on a catalytic molten Ni-Bi alloy is described and used for comparative cost estimates. In the absence of a price on carbon, SMR has the lowest cost of hydrogen production. For low-CO2 hydrogen production, methane pyrolysis is significantly more economical than electrochemical-based processes using commercial renewable power sources. At a carbon price exceeding $21 t?1 CO2 equivalent, pyrolysis may represent the most cost-effective means of producing low-CO2 hydrogen and competes favorably to SMR with carbon capture and sequestration. The current cost disparity between renewable and fossil-based hydrogen production suggests that if hydrogen is to fulfil an expanding role in a low CO2 future, then large-scale production of hydrogen from methane pyrolysis is the most cost-effective means during the transition period while infrastructure and end-use applications are deployed.  相似文献   
6.
Poly(lauryl methacrylate)s with anthracene moieties in the side chain were converted with C60‐fullerene and phenyl‐C61‐butyric acid methyl ester (PCBM), resulting in new remendable (self‐healing) polymeric materials. The utilization of differently substituted anthracene monomers enabled the tuning of the reactivity and the resulting mechanical properties. Copolymers with different contents of the anthracene moieties were synthesized and characterized using size exclusion chromatography, 1H nuclear magnetic resonance (NMR) spectroscopy as well as differential scanning calorimetry (DSC). 1H NMR spectroscopic studies were utilized in order to investigate the reversibility of the Diels–Alder reaction between copolymers with C60‐fullerene and PCBM, respectively, in solution. In order to investigate the conversion of the polymers with C60‐fullerene and PCBM in bulk, additionally, DSC, nanoindentation, rheology, atomic force microscopy (AFM), 3D microscopy, simultaneous thermal analysis (STA) and FT‐Raman investigations were performed. The fullerene‐containing copolymers could be healed in a temperature range of 40–80 °C. Consequently, a new generation of low temperature remendable polymers could be established. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45916.  相似文献   
7.
Metals and Materials International - The corrosion behaviour of type 316L stainless steel in aqueous 30–50&nbsp;wt%. NaOH at temperatures up to 90&nbsp;°C has been elucidated....  相似文献   
8.
9.
In this article, two bio-sorbents have been selected: lasani sawdust (LS) (a new bio-based material) and coconut coir (CC) for the removal of used motor oil from the aqueous phase. The physical nature of the materials was characterized using Fourier Transform Infrared Spectroscopy and Constitutional Analysis of lignin and cellulose. The adsorption process was evaluated using various kinetic and adsorption models. The evaluated sorption capacities for coconut coir and lasani sawdust were 12.82?g g?1 and 0.36?g g?1, respectively. Maximum sorption of oil from the aqueous solution conveniently took place in 20?minutes. To ascribe statistically which model describes the adsorption phenomenon best, Root Mean Square Error (RMSE) and Average Relative Error (ARE) were used. The kinetics of the adsorption was best described by Pseudo-second order. Similarly, Langmuir isotherm model had the least value for the two error functions and a higher qmax value for coir than for lasani. It was concluded that the increased absorptive ability of coir over lasani was due to the difference in the composition of lignin and cellulose of the two materials.  相似文献   
10.
There is growing awareness that indoor exposure to particulate matter with diameter ≤ 2.5 μm (PM2.5) is associated with an increased risk of adverse health effects. Cooking is a key indoor source of PM2.5 and an activity conducted daily in most homes. Population scale models can predict occupant exposures to PM2.5, but these predictions are sensitive to the emission rates used. Reported emission rates are highly variable and are typically for the cooking of single ingredients and not full meals. Accordingly, there is a need to assess PM2.5 emissions from the cooking of complete meals. Mean PM2.5 emission rates and source strengths were measured for four complete meals. Temporal PM2.5 concentrations and particle size distributions were recorded using an optical particle counter (OPC), and gravimetric sampling was used to determine calibration factors. Mean emission rates and source strengths varied between 0.54—3.7 mg/min and 15—68 mg, respectively, with 95% confidence. Using a cooker hood (apparent capture efficiency > 90%) and frying in non‐stick pans were found to significantly reduce emissions. OPC calibration factors varied between 1.5 and 5.0 showing that a single value cannot be used for all meals and that gravimetric sampling is necessary when measuring PM2.5 concentrations in kitchens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号