首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
工业技术   1篇
  2016年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The stereoselective synthesis of chiral 1,3‐diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of β‐hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a β‐hydroxy‐β‐trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2‐trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the β‐hydroxy‐β‐trifluoromethyl ketone was identified after purification and subsequent MALDI‐TOF mass spectrometric analysis. As a result, a new NADP+‐dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the β‐hydroxy‐β‐trifluoromethyl ketone to its corresponding 1,3‐diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N‐ or C‐terminal His‐tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N‐terminal His‐tag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the β‐hydroxy‐β‐trifluoromethyl ketone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号