首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   1篇
  国内免费   19篇
工业技术   144篇
  2022年   1篇
  2019年   18篇
  2018年   13篇
  2017年   3篇
  2016年   13篇
  2015年   9篇
  2014年   9篇
  2013年   4篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   9篇
  2007年   7篇
  2006年   14篇
  2005年   5篇
  2004年   5篇
  1999年   3篇
  1998年   4篇
排序方式: 共有144条查询结果,搜索用时 312 毫秒
1.
在镁合金表面制备了淡黄色微弧氧化膜,并对其耐蚀性进行了研究。结果表明:与镁合金基体相比,微弧氧化膜的点滴时间更长,自腐蚀电位更正,自腐蚀电流密度更小。这说明经过微弧氧化处理后镁合金的耐蚀性明显提高。微弧氧化膜表面平整、均匀,结合力较好。XRD分析结果显示,微弧氧化膜的组成主要为MgO、Mg_2SiO_4和Mg。  相似文献   
2.
3.
采用化学转化法在镁合金表面制备了磷酸盐转化膜,并研究了稀土元素钕和铈对磷酸盐转化膜性能的影响。结果表明:向磷酸盐转化液中加入钕元素或铈元素时,磷酸盐转化膜的耐蚀性均显著提高。加入0.4g/L钕元素和0.4g/L铈元素时,磷酸盐转化膜的耐硫酸铜点滴时间分别可以达到50.2s和54.2s。添加稀土元素未改变磷酸盐转化膜的表面形貌和组成。另外,加入0.4g/L铈元素时,磷酸盐转化膜的耐蚀性最好。  相似文献   
4.
镁合金植酸转化膜的制备及其性能的研究   总被引:1,自引:0,他引:1  
采用化学转化方法在AZ91D镁合金表面制备一种环境友好型的植酸转化膜。通过对pH值、温度、反应时间、植酸的质量分数等因素的控制,进行单因素实验和正交实验。确定的最佳工艺条件为:植酸3%,NaF 3g/L,H3BO340g/L,Ce(NO3)3·6H2O 5g/L,pH值4.5。采用优化后的工艺,能够在镁合金基体表面获得宏观上淡灰、致密,微观上具有微细裂纹的膜层。XRD测试表明:该植酸转化膜的主要成分为MgH10O24P6和CeO2。耐蚀性测试表明:植酸转化膜能有效地提高镁合金的耐蚀性。  相似文献   
5.
采用化学转化法在镁合金表面制备了磷酸盐转化膜。在基础磷化液中添加植酸,改善膜层的耐蚀性。通过交流阻抗、Tafel曲线和硫酸铜点滴实验确定了植酸最佳的质量分数为1.5%。该质量分数下的容抗弧半径最大,自腐蚀电流密度最低,耐蚀性最好。通过扫描电镜测试得出:膜层的表面结构为晶粒紧凑堆积状,该膜层很好地覆盖了基体表面,起到了一定的防护效果。  相似文献   
6.
在AZ91镁合金表面采用化学方法制备转化膜层。对植酸化学转化溶液中植酸质量分数,pH,反应温度,反应时间等进行单因素实验和正交试验,确定最佳工艺参数:3 mL/L植酸,3 g/L NaF,40 g/L H3BO3,15mL/L H2O2,pH为4.5。在镁合金表面获得淡灰致密,具有微细裂纹的膜层。在植酸化学转化溶液中添加5g/L Ce(NO3)3·6H2O获得更为优异的耐蚀膜层。通过X-射线衍射测试表明,添加Ce(NO3)3·6H2O的镁合金化学转化膜的主要成分为MgH10O24P6和CeO2。耐蚀性测试表明,两种溶液获得的镁合金化学转化膜的耐蚀性能均有提高,其中添加硝酸铈的膜层微观形貌及性能较佳。  相似文献   
7.
目的提高钼酸盐转化膜的耐腐蚀性能,制备微弧氧化增强的钼酸盐膜层。方法采用化学转化法和微弧氧化法在AZ91D镁合金表面制备钼酸盐转化膜、微弧氧化膜和微弧氧化增强的钼酸盐膜层,研究了膜层的电化学行为和腐蚀失重情况,利用SEM、EDS、XRD和激光共聚焦显微镜对膜层的表面形貌、元素组成、物相组成和粗糙度进行分析。结果 XRD分析表明,钼酸盐膜层经过微弧氧化处理后,所得膜层较微弧氧化膜层多出新相MoSi_2。钼酸盐转化膜层经过微弧氧化处理后,相比于微弧氧化膜层,表面变得平整光滑,孔洞微粒变小,粗糙度降低。钼酸盐转化膜经过微弧氧化处理后,在3.5%NaCl溶液中浸泡48 h,膜层失重最低。通过电化学测试,微弧氧化增强钼酸盐膜层的腐蚀电位较钼酸盐转化膜的腐蚀电位正移0.643 V,较微弧氧化膜的腐蚀电位正移0.419 V,腐蚀电流密度较钼酸盐转化膜降低了3个数量级,较微弧氧化膜降低了1个数量级。结论钼酸盐转化膜经过微弧氧化处理后,膜层的耐腐蚀性能优于钼酸盐转化膜和微弧氧化膜,使镁合金的应用前景有所提高。  相似文献   
8.
镀锡板钼酸盐-植酸体系电化学钝化膜的制备及性能研究   总被引:1,自引:0,他引:1  
本工作用电化学方法对镀锡板进行钝化处理。采用硫酸铜点滴实验、电化学交流阻抗、Tafel曲线和扫描电子显微镜等方法检验膜层的性能。研究了电流密度、添加物、钝化时间等因素对钝化膜耐腐蚀性的影响,得出钝化膜的耐蚀性随着钝化时间的增大呈现先增大后趋于平稳的趋势,当钝化时间达到40 s时钝化膜的耐蚀性能最佳。优化出了最佳钝化工艺:钼酸钠25 g·L–1;植酸6.5 g·L–1;p H=4.5;钝化时间40 s;Jk=1.5 m A·cm-2。钝化处理后的膜层均匀平整的覆盖了镀锡板表面,膜层的腐蚀电位正移0.108 V,腐蚀电流降低2.3577×10-5 A·cm-2,硫酸铜点滴时间提高了23.3 s,电化学钝化效果接近铬酸盐钝化效果,有效提高了镀锡板的耐蚀性能。  相似文献   
9.
目的提高镁合金微弧氧化膜的耐蚀性。方法在Na_2SiO_3-NaOH-Na_2B_4O_7组成的电解液体系中,分别加入铜离子、钴离子和镍离子对AZ91D镁合金进行微弧氧化,研究离子种类和组成对膜层性能的影响。采用点滴实验测试膜层的耐蚀性,采用电化学工作站测试膜层的电化学性能,采用扫描电子显微镜(SEM)和能谱分析(EDS)对微弧氧化膜层的表面形貌和元素组成进行分析。结果电解溶液中加入钴离子、铜离子、镍离子后,镁合金微弧氧化膜的耐腐蚀性能均有提高。其中铜离子的影响最大,加入1.5 g/L的铜离子后,镁合金微弧氧化膜的点滴时间提高了77.3 s,膜层耐腐蚀性能显著提高。电化学测试结果得出,不加金属离子的氧化膜的腐蚀电流密度为1.092×10~(-5) A/cm~2,腐蚀电位为-1.487 V;加入钴、铜、镍离子浓度分别为2、1.5、3 mol/L时,腐蚀电流密度分别为3.912×10~(-6)、6.027×10~(-6)、2.167×10~(-6) A/cm~2,腐蚀电位分别为-1.412、-0.832、-1.047 V;加入金属离子制得的微弧氧化膜的腐蚀电流密度均降低了1个数量级,腐蚀电位不同程度地正移,其中加入铜离子后腐蚀电位提高了0.655 V。加入金属离子后,陶瓷膜表面空隙和孔洞数量不同程度地变浅和减少,增加了膜层的致密性和均匀性。结论电解液中添加一定量的铜、钴、镍离子均能够提高AZ91D镁合金微弧氧化膜层的耐蚀性,其中铜离子的效果最明显。  相似文献   
10.
镁合金浸锌前处理对化学镀镍层的影响   总被引:1,自引:1,他引:0  
目的优化出镁合金浸锌前处理的处理液络合剂及工艺条件。方法研究镁合金浸锌前处理处理液的络合剂,确定出适用的络合剂,并在最佳络合剂的条件下,研究前处理液pH值和温度的变化对化学镀镍层的影响。采用电化学测试、扫描电子显微镜(SEM)和X射线衍射(XRD)对化学镀镍层进行耐蚀性评价,并对其微观形貌进行表征,确定出最佳络合剂和工艺条件。结果通过对镀镍层厚度的测量及SEM微观形貌观测,确定最优的前处理液络合剂为苹果酸。在该条件下确定最佳的工艺条件为:pH=10,温度80℃。所制得的化学镀镍层的自腐蚀电位为-0.6 V,与镁合金基体的腐蚀电位-1.47 V相比,提高了0.87 V,腐蚀电流密度由镁合金基体的1.26×10~(-4) A/cm~2下降到1.26×10~(-6) A/cm~2,自腐蚀电流密度降低了2个数量级。镀层的钝化区间在-0.6~0.2 V,且结合力好,外形美观。结论镁合金浸锌前处理处理液的最佳络合剂为苹果酸,最佳工艺条件为pH=10、温度80℃。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号