首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
工业技术   28篇
  2023年   1篇
  2020年   2篇
  2018年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2006年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1994年   1篇
  1991年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Hydrogen storage is one of the most important issues to realize hydrogen society especially for on-board usage. Recently, high-pressure metal hydride (MH) tank attracts many attentions due to its high volumetric hydrogen storage density and relatively easy heat management. To emphasize its merits, further improvements of properties of MH, such as capacity, hydrogen desorption capability at low temperature and durability, are required. In this paper, V–Ti–Cr alloys of V-rich compositions were investigated with perspective of increasing of hydrogen desorption pressure and durability. In both of 60at%V–Ti–Cr and 80at%V–Ti–Cr alloys, good relationship between hydrogen desorption pressure and Ti content was observed. In comparing with 60at%V–Ti–Cr alloys, 80at%V–Ti–Cr alloys showed good durability. It is quite notable that relationship between limitation line (upper substitution limit of Ti by Cr without degradation of hydrogen capacity) and desorption pressure for V–Ti–Cr ternary system with V-rich composition is clarified. And also, it is revealed that in the case of V–Ti–Cr ternary system, not only Ti/Cr ratio but also V content is important factor to obtain alloys with high hydrogen desorption pressure. 75at%V–5at%Ti–Cr as-cast sample showed good durability, hydrogen desorption capability at low temperature and relatively high effective hydrogen capacity simultaneously.  相似文献   
2.
The photocatalytic oxidation of CO into CO2 with oxidants such as NO, N2O and O2 proceeded efficiently on a Mo/SiO2 with high Mo dispersion under UV light irradiation. It was found that the reaction rate greatly depended on the kind and concentration of the oxidant. Photoluminescence investigations reveal the close relationship between the reaction rate and the relative concentration of the photo-excited Mo6+-oxide species, i.e. charge transfer–excited–triplet state (Mo5+–O)*, under steady-state reaction conditions. Moreover, the photocatalytic oxidation of CO with O2 in excess H2 was carried out to test suitability for applications to supplying pure H2. This reaction was seen to proceed efficiently on Mo/SiO2 with a high CO conversion of 100% and CO selectivity of 99% after 180 min under UV light irradiation, showing higher photocatalytic performance than TiO2 (P-25) photocatalyst. UV–vis, XAFS, photoluminescence and FT-IR investigations revealed that the high reactivity of the charge transfer–excited–triplet state (Mo5+–O)*, with CO as well as the high reactivity of the photoreduced Mo-oxide species (Mo4+-species) with O2 to produce the original Mo-oxide species (Mo6+O2−), played a crucial role in the reactions.  相似文献   
3.
The preparation and oxygen permeation properties of the (Ce0.8Pr0.2)O2−δ − x vol% MnFe2O4 composites, where x = 0 to 35, have been investigated. The samples were prepared by the Pechini method. In the case of Ce0.8Pr0.2O2−δ, an oxygen flux density of 6 μmol⋅cm−2⋅s−1 (L = 0.0247 cm) and the maximum methane conversion of 50% were attained at 1000C. Unlike composites consisting of Gd-doped CeO2 and MnFe2O4, the oxygen permeability of the (Ce0.8Pr0.2)O2−δ – x vol% MnFe2O4 composites was almost constant regardless of the volume fraction of MnFe2O4; however, the optimum volume fraction of MnFe2O4 was determined to be 5 to 25 in the context of the chemical and mechanical stabilities under methane conversion atmosphere. In addition, the surface modification of the (Ce0.8Gd0.2)O2−δ – 15 vol% MnFe2O4 composite was performed by using the FePt nanoparticles. The catalyst loading of 2.8 mg/cm2 on the both side of the 0.3 mm-thick (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite increased the oxygen flux density from 0.30 to 0.76 μmol⋅cm−2⋅s−1 in the case of He/air gradients; however, the effect seems to be reduced in the case of high oxygen flux density caused by a large pO2 gradient. Moreover, the Langmuir-Blodgett film of the FePt nanoparticles were successfully prepared on the tape-cast (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite. Hydrophobic treatments for the surface of the composite were crucial to achieve high transfer ratio for the deposition of the LB film.  相似文献   
4.
This paper aims to study the relationship between the protium absorption properties and alloy composition of Ti−V−Cr alloys. We studied the effects of composition of the alloys and the heat-treatment on the protium absorption-desorption properties of Ti−V−Cr alloys, and found that Ti−35V−40Cr alloys show 2.6 mass% protium capacity. The plateau pressure of the alloys increased with decreasing lattice constants, resulting from increasing Cr content. The main phase of the samples containing more than 15%V was a BCC phase in the cast state. These BCC phase alloys exhibited 2.4 mass% protium. It was also found that the heat-treatment was effective in stabilizing a BCC structure in Ti−V−Cr alloys with low V content. The alloy yields the high capacity of 3.0 mass% protium capacity, which will be the highest value at 313 K reported so far. The alloy will be promising since it contains a low amount of the expensive V element. This article based on a presentation made in the symposium “The 2nd KIM-JIM Joint Symposium: Hydrogen Absorbing Materials”, held at Hanyang University, Seoul, Korea, October 27–28 under the auspices of The Korean Institute of Metals and Materials and The Japan Institute of Metals.  相似文献   
5.
Using microwave-assisted deposition method the uniform and nano-sized platinum metal particles were prepared on the tetrahedrally coordinated Ti-oxide moieties isolated within the framework of mesoporous silica supports. The present nano-sized metal catalyst exhibited a higher activity for hydrogenation of nitrobenzene than the catalyst prepared by a conventional impregnation method.  相似文献   
6.
Abstract

In this study, we propose a new robot system consisting of a mobile robot and a snake robot. The system works not only as a mobile manipulator but also as a multi-agent system by using the snake robot's ability to separate from the mobile robot. Initially, the snake robot is mounted on the mobile robot in the carrying mode. When an operator uses the snake robot as a manipulator, the robot changes to the manipulator mode. The operator can detach the snake robot from the mobile robot and command the snake robot to conduct lateral rolling motions. In this paper, we present the details of our robot and its performance in the World Robot Summit.  相似文献   
7.
8.
The photocatalytic preferential oxidation of CO with O2 in the presence of H2 (photo-PROX) was found to proceed efficiently on the NiO-loaded TiO2 (NiO/TiO2) catalyst under UV light irradiation at 293 K. NiO/TiO2 exhibited higher CO conversion as well as CO2 selectivity for a photo-PROX reaction than the original unloaded TiO2 (P-25). Various spectroscopic investigations have revealed that the small NiO clusters formed on TiO2 play an important role in the enhancement of CO oxidation activity in this reaction.  相似文献   
9.
Hydrophobically modified zeolites were prepared using alkoxide reagent containing fluorine, triethoxyfluorosilane (TEFS). These zeolites have still maintained mesoporous structure and large surface area and showed more hydrophobic property compared with unmodified zeolite. Moreover surface modified zeolite prepared thus was applied as a support of TiO2 photocatalyst for efficient adsorption and photocatalytic degradation of acetaldehyde diluted in air. With an increase in the grafted amount of TEFS reagent, the TiO2 photocatalyst deposited on the modified zeolite showed greater photocatalytic activities for the degradation of acetaldehyde compared with that on unmodified zeolite due to its hydrophobic property.  相似文献   
10.
Through the simple process using alkoxide reagent containing fluorine, triethoxyfluorosilane (TEFS), hydrophobic mesoporous silica material (HMS) was prepared. The surface modified HMS have still maintained its mesoporous structure and large surface area and showed considerable hydrophobic property compared with non-modified HMS. Moreover the surface modified HMS was applied as a support of TiO2 photocatalyst with the aim of the efficient degradation of organic pollutant in water. Due to the hydrophobic property, the fine TiO2 photocatalyst particles were generated on the modified HMS and both the adsorption properties and photocatalytic activities for the degradation of 2-propanol diluted in water were dramatically increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号