首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   16篇
工业技术   298篇
  2023年   4篇
  2022年   8篇
  2021年   11篇
  2020年   11篇
  2019年   14篇
  2018年   13篇
  2017年   9篇
  2016年   11篇
  2015年   15篇
  2014年   19篇
  2013年   24篇
  2012年   19篇
  2011年   21篇
  2010年   13篇
  2009年   9篇
  2008年   17篇
  2007年   13篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有298条查询结果,搜索用时 28 毫秒
1.
Poly(ethylene oxide) (PEO)/clay nanocomposites were prepared by a solution intercalation method using chloroform as a solvent. The nanocomposites were characterised by X-ray diffraction (XRD), differential scanning calorimetry (DSC), hot-stage polarized optical microscopy (POM), Fourier transform infrared spectroscopy (FT-IR), tensile analysis, dynamic mechanical analysis (DMA) characterisation techniques. Formation of nanocomposite was confirmed by X-ray diffraction (XRD) analysis. A decrease in PEO crystallinity in case of nanocomposite, was confirmed by a decrease in the heat of melting and spherulite size as indicated by DSC and POM studies, respectively. Improvement in tensile properties in all respect was observed for nanocomposites with optimum clay content (12.5 wt%). DMA studies indicate an increase in loss peak temperature and broadening of loss peak as a result of clay intercalation.  相似文献   
2.
Image denoising is a procedure aimed at removing noise from images while retaining as many important signal features as possible. Many images suffer from poor contrast due to inadequate illumination or finite sensitivity of the imaging device, electronic sensor noise or atmospheric disturbances. This paper proposes a hybrid directional lifting technique for image denoising to retain the original information present in the images. The primary objective of this paper is to show the impact of applying preprocessing techniques for improving classification accuracy. In order to classify the image accurately, effective preservation of edges and contour details of an image is essential. The discrete wavelet transform-based interpolation technique is developed for resolution enhancement. The image is then classified using support vector machine classifier, which is well suitable for image classification. The efficiency of the classifier is analyzed based on receiver operating characteristic (ROC) curves. The quantitative performance measures peak signal to noise ratio and ROC analysis show the significance of the proposed techniques.  相似文献   
3.
In the present study, influence of friction stir processing (FSP) tool pin profile on the microstructure evolution, corrosion and machining characteristics of the AZ91 magnesium alloy was investigated. Three different pin profiles namely simple taper, threaded taper and square taper were selected and FSP was carried out at 1400 rpm and 25 mm/min tool travel speed. Microstructural observations indicated grain refinement from a starting grain size of 166.5–7.9, 22.1 and 4.08 µm for FSPed samples processed by simple taper, threaded taper and square taper pins, respectively. In all the FSPed samples, decreased amount of secondary phase (Mg17Al12) was observed compared with that of the unprocessed sample. From the X-ray diffraction analysis, it was observed that the square taper pin tool had induced higher texture effect compared with the other two FSP tools. From the electrochemical studies, the corrosion resistance of the sample processed with square taper pin tool was observed to be more in comparison to that of the other samples; which could be attributed to the texture effect and decreased fraction of secondary phase. Machining behavior assessed by conducting drilling experiments showed a significant influence of grain refinement on the cutting forces.  相似文献   
4.
Spacecraft venturing to the outer planets and beyond—or onto the planetary surface where available solar energy is reduced—benefit from the longevity and consistency of electrical and thermal energy derived from radioisotope energy sources. A review of likely mission requirements and concept studies of small electrical generating units (<10 We) reveals a potential opportunity for a unit with an electrical output of around 1 We that can also supply some heat to the spacecraft to aid thermal control: a radioisotope thermoelectric and heating unit. This power requirement cannot be achieved with current US space‐qualified modular radioisotope fuel assemblies. Additionally, new European programmes consider 241Am fuel to be much more cost effective than 238Pu. Taken together, these factors provide the rationale for taking a relatively ‘clean‐sheet’ approach to design of a radioisotope thermoelectric and heating unit fuelled with 241Am. In this paper, initial requirements and performance targets for such a unit are developed, a simple concept design and thermal model is presented and the performance and mass are estimated. The results suggest that units generating 1–2 We may achieve a specific power of around 0.7–0.9 We kg?1 without the thermal inputs to spacecraft becoming impractically large. Such units can use a bismuth telluride thermoelectric material, which is commercially applied in terrestrial applications and is therefore likely to incur lower cost and development risk than more specialised compounds. This study may form the basis of a more detailed design effort. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
5.
In order to minimize the impact of secret signing key exposure in attribute-based signature scenario, we construct an attribute-based key-insulated signature (ABKIS) scheme for expressive monotone boolean function access structures utilizing only four pairing operations in verification process and making the signature length constant, that is, the number of pairings required for signature verification and the size of signature are independent of the size of attribute set participated in the respective process. The (strong) key-insulated selective security of our ABKIS scheme is reduced to the computational Diffie–Hellman Exponent problem without using any random oracles. The proposed construction attains signer privacy, which is a fundamental requirement of the signature schemes in the attribute-based setting.  相似文献   
6.

Measurement of bed shear stress is always a challenging task for engineers. In river engineering, bed shear is a fundamental variable and is important in estimating flow resistance and sediment transport. In this study, experiments are carried out in diverging compound channel with smooth bed (perspex sheet) and rough bed (Gravel) conditions to determine the effect of roughness. The shear velocity is estimated from universal logarithmic law. The effect of geometry and roughness on Von-Karman constant, eddy viscosity coefficient, friction factor is studied. The mass conservation and momentum conservation equations are used to derive apparent shear forces at interface of main channel and floodplain. A genetic algorithm model is developed to predict percentage of shear force (%Sfp) carried by sub-sections. To perform better with less and unseen data K-Fold cross-validation technique is used. The model is compared with available models in literature and it is observed that developed model gave better predictions with low MAPE.

  相似文献   
7.
This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson’s ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.  相似文献   
8.
Abstract: Recent evidence has demonstrated that nitrites play an important role in the cardiovascular system. Fennel (Foneiculum vulgare) seeds are often used as mouth fresheners after a meal in both the Indian sub‐continent and around the world. The present study aims to quantify the nitrite and nitrates in fennel seeds as well as elucidating the effect of fennel derived‐nitrites on vascular functions. Results from our study show that fennel seeds contain significantly higher amount of nitrites when compared to other commonly used post‐meal seeds. Furthermore our study confirmed the functional effects of fennel derived‐nitrites using in vitro and ex vivo models that describe the promotion of angiogenesis, cell migration, and vasorelaxation. We also showed that chewing fennel seeds enhanced nitrite content of saliva. Thus our study indicates the potential role of fennel derived‐nitrites on the vascular system. Practical Application: This study is focused on determining the effect of fennel‐derived nitrites on angiogenesis (the formation of new blood vessels from pre‐existing ones), cell migration, and vasorelaxation (dilation of blood vessels) thereby preserving cardiovascular health.  相似文献   
9.
An optimum nanostructure and pore size of catalyst supports is very important in achieving high catalytic performances. In this instance, we evaluated the effects of various carbon nanostructures on the catalytic performances of carbon‐supported platinum (Pt/C) electrocatalysts experimentally and numerically. The Pt/C catalysts were prepared using a hybrid method involving the preparation of dense, hollow, and porous nanostructured carbon particle via aerosol spray pyrolysis followed by microwave‐assisted Pt deposition. Electrochemical characterization of the catalysts showed that the porous Pt/C catalyst gave the best performance; its electrochemical surface area was much higher, more than twice than those of hollow or dense Pt/C. The effects of pore size on electrocatalysis were also studied. The results showed the importance of a balance between mesopores and macropores for effective catalysis with a high charge transfer rate. A fluid flow model showed that good oxygen transport contributed to the catalytic activity. © 2015 American Institute of Chemical Engineers AIChE J, 62: 440–450, 2016  相似文献   
10.
This paper demonstrates the robustness of group delay based features to additive noise. First, we analytically show the robustness of group delay based representations. The analysis makes use of the fact that, for minimum-phase signals, the group delay function can be represented in terms of the cepstral coefficients of the log-magnitude spectrum. Such a representation results in the speech spectrum dominating over the noise spectrum, both at low and high SNRs. Further, we experimentally demonstrate the robustness of the representation on a voice activity detection (VAD) task, comparing a group delay based VAD algorithm with standard VAD methods as well as a magnitude-spectrum based method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号