首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84960篇
  免费   1054篇
  国内免费   418篇
工业技术   86432篇
  2023年   33篇
  2022年   54篇
  2021年   78篇
  2020年   63篇
  2019年   50篇
  2018年   14500篇
  2017年   13416篇
  2016年   10012篇
  2015年   639篇
  2014年   275篇
  2013年   293篇
  2012年   3193篇
  2011年   9478篇
  2010年   8330篇
  2009年   5607篇
  2008年   6832篇
  2007年   7843篇
  2006年   160篇
  2005年   1238篇
  2004年   1155篇
  2003年   1197篇
  2002年   562篇
  2001年   113篇
  2000年   193篇
  1999年   72篇
  1998年   82篇
  1997年   38篇
  1996年   68篇
  1995年   37篇
  1994年   19篇
  1993年   23篇
  1992年   25篇
  1991年   40篇
  1989年   22篇
  1988年   21篇
  1969年   24篇
  1968年   44篇
  1967年   33篇
  1966年   43篇
  1965年   44篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Shah  Raj  Dhavse  Rasika 《SILICON》2021,13(2):587-597
Silicon - A novel hybrid silicon Single Electron Transistor Metal Oxide Semiconductor (SETMOS) logic is evaluated for its functionality and usability. Emphasis is given on obtaining functionality...  相似文献   
2.
Crystalline quartz has long been identified as among the weakest of abundant crustal minerals. This weakness is particularly evident around the αβ phase inversion at 573°C, in which Si–O bonds undergo a displacive structural transformation from trigonal to hexagonal symmetry. Here we present data using indentation testing methodologies that highlight the precipitous extent of the transformational weakening. Although the indentations are localized over relatively small specimen contact areas, the data quantify the essential deformation and fracture properties of quartz in a predominantly (but not exclusively) compressive stress field, at temperatures and pressures pertinent to conditions in the earth's crust.  相似文献   
3.
Journal of Computational Electronics - In the nanoscale regime, carbon nanotubes (CNTs) are being considered as a future alternative interconnect material for traditional copper (Cu) wires in...  相似文献   
4.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
5.
The stretchable electrodes with excellent flexibility, electrical conductivity, and mechanical durability are the most fundamental components in the emerging and exciting field of flexible electronics. This article proposes a method for fabrication of such a stretchable electrode by embedding silver nanorods (AgNRs) into a polydimethylsiloxane (PDMS) matrix that is grown by a unique glancing angle deposition technique. The surface, mechanical, and electrical properties of PDMS are significantly changed after embedding the AgNRs in it. The results show that surface roughness and polarity increase after AgNRs are embedded in the PDMS matrix. Elastic modulus (E) and hardness (H) decrease with an increase in the indentation load as a result of the indentation depth effect. Due to strong interfacial adhesion of AgNRs embedded in the PDMS matrix, the E and H of nanocomposite are increased by 167.6 and 93.3% compared with PDMS film, respectively. Furthermore, the AgNRs-PDMS film has an electrical resistivity value in the order of 10−7 Ωm. It remains conductive during various mechanical strains such as bending, twisting, and stretching, which is demonstrated using a light-emitting diode circuit. Simultaneously, the antimicrobial activity of silver could make it a promising candidate for wearable electronics.  相似文献   
6.
In this study, we aimed at fabricating decellularized bovine myocardial extracellular matrix-based films (dMEbF) for cardiac tissue engineering (CTE). The decellularization process was carried out utilizing four consecutive stages including hypotonic treatment, detergent treatment, enzymatic digestion and decontamination, respectively. In order to fabricate the dMEbF, dBM were digested with pepsin and gelation process was conducted. dMEbF were then crosslinked with N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (NHS/EDC) to increase their durability. Nuclear contents of native BM and decellularized BM (dBM) tissues were determined with DNA content analysis and agarose-gel electrophoresis. Cell viability on dMEbF for 3rd, 7th, and 14th days was assessed by MTT assay. Cell attachment on dMEbF was also studied by scanning electron microscopy. Trans-differentiation capacity of human adipose-derived mesenchymal stem cells (hAMSCs) into cardiomyocyte-like cells on dMEbF were also evaluated by histochemical and immunohistochemical analyses. DNA contents for native and dBM were, respectively, found as 886.11?±?164.85 and 47.66?±?0.09?ng/mg dry weight, indicating a successful decellularization process. The results of glycosaminoglycan and hydroxyproline assay, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), performed in order to characterize the extracellular matrix (ECM) composition of native and dBM tissue, showed that the BM matrix was not damaged during the proposed method. Lastly, regarding the histological study, dMEbF not only mimics native ECM, but also induces the stem cells into cardiomyocyte-like cells phenotype which brings it the potential of use in CTE.  相似文献   
7.
8.
In this study, three different configurations of a solid oxide fuel cell and gas microturbine hybrid system are evaluated for application in auxiliary power units. The first configuration is a common hybrid system in auxiliary power units, utilizing a fuel cell stack in the structure of the gas turbine cycle. The other configurations use two series and parallel fuel cell stacks in the structure of the gas turbine cycle. The main purpose of this research is thermodynamic analysis, evaluation of the performance of the proposed hybrid systems in similar conditions, and selection of an appropriate system in terms of efficiency, power generation, and entropy generation rate. In this study, the utilized fuel cells were subjected to electrochemical, thermodynamic, and thermal analyses and their working temperatures were calculated under various working conditions. Results indicate that the hybrid system with two series stacks had maximum power generation and efficiency compared with the other two cases. Moreover, the simple hybrid system and the system with two parallel stacks had relatively equal pure power generation and efficiency. According to the investigations, hybrid system with two series fuel cell stacks, which had 3424 and 1712 cells, respectively, can achieve the electrical efficiency of over 48%. A hybrid system with two parallel fuel cell stacks, in which each stack had 2568 cells, had the electrical efficiency of 46.3%. Findings suggested that maximum electrical efficiency occurred between the pressure ratios of 5–6 in the proposed hybrid systems.  相似文献   
9.
Ballast contamination by fine materials such as sand and clay in railway track at arid regions is an important issue that causes track instability problems and settlement due to reduction of shear strength of ballast. In this paper, the results of direct shear box test conducted on clean ballast, sand-fouled ballast and clay-fouled ballast for different ballast gradations are reported and discussed. For this purpose, three different fouling amounts according to fouling index are added to clean ballast. Test results show that by increasing the fouling percentage, the ballast shear strength always decreases both for sand and clay fouled ballast. However, the amount of shear strength reduction is low at high normal stresses. Clay contamination has more adverse effect on the shear strength of ballast compared with sand contamination. Also, the results of tests for evaluation of gradation effect on shear strength of fouled ballast which are conducted on various gradations according to American Railway Engineering and Maintenance-of-Way Association, show that the maximum particle size as well as uniformity coefficient affect the shear strength of ballast. Also, an empirical equation is presented to observe the effect of ballast gradation on reduction of shear strength with regard to amount of fouling material and normal stress.  相似文献   
10.
The rapid population growth of cities in developing countries (DC) make difficult to distribute the available potable water (PW) with equality. The distribution problem arises from an insufficient amount of PW and because cities water distribution systems (WDS) are not efficient. The novelty of this paper is a self-tuning controller (STC) proposed to manage, along the day, the pressure of water through the nodes of a WDS. It means, pressure management (PM) is proposed to control water levels (WLs) in householders tanks (HTs). The objective is to satisfy with equality the PW demand at different zones of a city forcing the flow of water by managing the pressure. The proposed STC performance is tested on the digital simulator developed to characterize the hydraulic operation of a WDS. The dynamic behaviour of the WDS is determined by the variation of the WL in the tanks of the WDS when water is supplied or extracted from them. The WDS of Mexico City is analysed and the proposed STC is applied to a simplified WDS. The results allow to conclude that the proposed STC could become a supporting tool for the decision making of WDS operators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号