首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   15篇
工业技术   258篇
  2022年   5篇
  2021年   4篇
  2020年   9篇
  2019年   8篇
  2018年   12篇
  2017年   25篇
  2016年   7篇
  2015年   9篇
  2014年   14篇
  2013年   21篇
  2012年   8篇
  2011年   9篇
  2010年   7篇
  2009年   2篇
  2008年   12篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   7篇
  2003年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1979年   2篇
  1978年   6篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
1.
This work aims to develop and evaluate the efficacy of tea tree oil (TTO) ethosomal cream with improved deposition in skin layers for treatment of atopic dermatitis (AD). Ethosomes of TTO are developed using phosphatidylcholine (2% and 3% w/v) and ethanol (20%, 30%, and 40% w/v). Ethosomes are evaluated for percent entrapment efficiency (%EE), vesicle size, zeta potential, and in vitro drug diffusion. Ethosomal creams with optimized ethosomal dispersion are developed and evaluated for physicochemical parameters, thermal stability, ex vivo permeation, skin retention, and in vitro cytotoxicity using HaCat skin cell lines in comparison to conventional creams of TTO. In vivo investigations of optimized creams are performed using BALB/c mice model. The %EE, vesicle size, and zeta potential for optimized ethosomes are found to be 76.19 ± 3.26%, 333.6 nm, and –35.3 mV, respectively. Ethosomal creams showed higher deposition in the epidermis and dermis. The optimized creams are non-cytotoxic to HaCat cell lines. The creams significantly reduce the inflammatory response by decreasing the clinical score and infiltration of white blood cells, eosinophils, and IgE antibodies. Overall efficacy of ethosomal cream is higher than conventional cream. In conclusion, optimized ethosomal cream of TTO shows good efficacy for treatment of AD. Practical applications : The method used for the formulation of ethosomes is simple and can be easily scaled up on the industrial level. The loading of TTO within ethosomes can increase the efficiency by enhanced drug deposition in the epidermis and might also improve its stability against oxidative degradation. Topical ethosomal cream of TTO can improve patient compliance by avoidance of adverse effects linked with corticosteroids and could be a possible complementary or alternative therapy in management of AD.  相似文献   
2.
In the present work, PPy, ZnO, and polypyrrole/zinc oxide (PPy/ZnO) microcomposites (1, 2, and 5 wt%) were prepared and their properties have been tuned for anticorrosion applications on low carbon mild steel. The synthesized products: ZnO, PPy, and composites were characterized by various sophisticated analytical techniques such as XRD, FTIR, Raman, FESEM, EDX, UV–VIS, TGA, and BET. The band frequencies observed at 480 and 588 cm−1 in FTIR spectrum correspond to stretching vibrations of Zn-O and N-H bonds, respectively, broadening of the bands in the composites indicate strong interactions between ZnO and PPy matrix. The potentiodynamic polarization study of PPy and PPy/ZnO composite was carried out in 3.5% NaCl solution to investigate the corrosion resistance efficiency. PPy/1 wt% ZnO (Icorr = 190 nA) composite coating on low carbon mild steel was observed to exhibit best corrosion protection property compared to PPy (121 μA), 2 and 5 wt% ZnO (242, 295 nA) composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48319.  相似文献   
3.
Protection of Metals and Physical Chemistry of Surfaces - Epoxy, Fusion bonded epoxy and conducting polyaniline based paints were applied on low carbon steel sample. Conducting polyaniline and...  相似文献   
4.
5.
Hydrogen is the most environment friendly fuel and has the largest energy density but still much away from being a viable technology due to the cost associated with its production on-site on-demand. However, hydrogen production via water splitting could become potential commercial technology by designing new catalyst materials with low cost, desired surface structures and properties that govern hydrogen evolution reaction (HER) activity and stability. Here, we report the methanol assisted electrochemical water splitting using silver nanoparticles decorated hematite (Ag-hematite) dendrite nanostructures. Ag-hematite nano-dendrites prepared via two different methods viz. chemical co-precipitation and hydrothermal treatment are analysed and compared for their potential applications towards methanol assisted water splitting. It is found that Ag-hematite nano-dendrites prepared by chemical precipitation method shows much better activity as compared to both the parent materials (i.e. Ag NPs and hematite nano-dendrites) as well as Ag-hematite nano-dendrites synthesized by hydrothermal treatment. A baseline study showing the influence of methanol concentration, catalyst, catalyst support, and operating mode has been established. The analysis of the system was carried out as a function of onset potentials and kinetic parameters, including the Tafel slopes and exchange current densities. The effect of electrochemical promotion was investigated to see if it can increase the efficiency and performance of H2 production through electrochemical processes. The observed electro-catalytic enhancement could be attributed to the synergistic effect of hematite dendrites, larger surface area of dendrite structure leading to higher loading of Ag NPs on the surface of HDs. Moreover, the endurance study was performed to check the stability of the presented electrocatalyst in acidic medium under both dark and light illumination conditions which shows that the presented composite catalyst is stable for minimum 100 scans even under light illumination with no signs of photo-corrosion.  相似文献   
6.
7.
8.
This study describes the synthesis of carbon-encapsulated iron nanoparticles using an ultrasonic method and also investigates their catalytic activity. These nanoparticles have been prepared using ultrasonic irradiation followed by annealing at various temperatures. As the annealing temperature of as-prepared α-Fe2O3 nanoparticles increased, the sample transformed into γ-Fe2O3, Fe3O4, and Fe nanoparticles via the reduction process without requiring any additional reducing agents such as H2 gas, thus, creating a carbon shell surrounding the nanoparticles. By controlling the experimental conditions, Fe nanoparticles of various sizes can be formed with diameters in the range 100–800 nm; these nanoparticles are tightly encapsulated by 20-nm-thick carbon shells. Because of their high saturation magnetization 212 emu g?1, the carbon-encapsulated Fe nanoparticles can be used for magnetic resonance imaging with a dramatically enhanced efficiency compared to commercially available T 2 contrast agents. Moreover, the carbon-encapsulated Fe nanoparticles showed its superior catalytic activity and reusability for the hydrogenation of biomass-derived levulinic acid to GVL (99.6 %) in liquid phase.  相似文献   
9.
Polymeric mucoadhesive pellets of nifedipine were designed using computer software and they were prepared by extrusion-spheronization using HPMC K15M and κ-carrageenan with microcrystalline cellulose. A randomized rotatable two factor central composite design was applied for assessment of influence of two independent variables such as concentration of κ-carrageenan and HPMC K15M on dependent variables. Pellets were characterized by FTIR, DSC, SEM, flow properties, particle size, abrasion resistance, sphericity, drug content, percent production yield, in vitro drug release, ex vivo mucoadhesion, stability studies and similarity factor. The optimized formulation was selected based on criteria of sphericity nearest to 1.0 with maximum cumulative drug release percentage. Formulation NF6 exhibited sufficient porous spheres, free flowing and smooth surface mucoadhesion of 91.34 % and drug content 98.22 ± 0.37 %. Kinetic modeling revealed that the formulation followed the Higuchi model and showed the Quassi-Fickian drug release mechanism. The similarity factor, F2 value, was found to be 74 ± 6 and there was no significant change in drug content and ex vivo mucoadhesion after 90 days at 40 ± 2 °C, and 75 ± 5 % RH clearly indicated the optimized batch NF6 was stable. Thus, it can be concluded that use of κ-carrageenan, microcrystalline cellulose and HPMC K15M at the 20:35:10 w/w ratio could provide an effective carrier for enhancement of sphericity and sustained release of matrix pellets.  相似文献   
10.
The objective of this study is to demonstrate the significant improvement in the photoelectrochemical (PEC) hydrogen generation by a photoanode owing to the increased surface area of the substrate. In this work, multilayered tungsten oxide (WO3) films have been successfully synthesized onto the large‐area sheet (9 × 9cm2) and mesh (1 × 20cm2) ‐type stainless steel (SS) substrates using screen printing and brush painting methods, respectively. All the WO3 films are porous and nanocrystalline (30–80 nm) in nature with a monoclinic crystal structure as revealed from X‐ray diffraction and scanning electron microscopy studies. The PEC water splitting study is performed under simulated 1 SUN illumination (AM1.5 G) in a typical two‐electrode cell configuration with WO3 photoanode and Pt wire immersed in 0.5 M H2SO4 electrolyte. The photocurrent as well as hydrogen generation rate for WO3 photoanodes coated on the plane SS sheet substrate is relatively low and showed minimal change with increasing film thickness. On the other hand, the photocurrent as well as the hydrogen generation is enhanced by a 3–4 fold degree for the WO3 photoanodes coated on SS mesh. We attribute such efficient water splitting to the increment in the filling factor of the WO3 material due to the large effective surface area of the SS mesh as compared to the SS sheet substrate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号