首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41193篇
  免费   14928篇
  国内免费   8篇
工业技术   56129篇
  2024年   7篇
  2023年   47篇
  2022年   52篇
  2021年   429篇
  2020年   1554篇
  2019年   3308篇
  2018年   3255篇
  2017年   3548篇
  2016年   4039篇
  2015年   4072篇
  2014年   4034篇
  2013年   5335篇
  2012年   2971篇
  2011年   2667篇
  2010年   2837篇
  2009年   2757篇
  2008年   2282篇
  2007年   2090篇
  2006年   1814篇
  2005年   1499篇
  2004年   1456篇
  2003年   1396篇
  2002年   1338篇
  2001年   1133篇
  2000年   1098篇
  1999年   480篇
  1998年   118篇
  1997年   78篇
  1996年   44篇
  1995年   44篇
  1994年   47篇
  1993年   37篇
  1992年   27篇
  1991年   30篇
  1990年   28篇
  1989年   15篇
  1988年   14篇
  1987年   22篇
  1986年   17篇
  1985年   14篇
  1984年   23篇
  1983年   10篇
  1982年   13篇
  1981年   5篇
  1980年   11篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1975年   5篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 738 毫秒
1.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
2.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
3.
A recent development in tactile technology enables an improvement in the appreciation of the visual arts for people with visual impairment (PVI). The tactile sense, in conjunction with, or a possibly as an alternative to, the auditory sense, would allow PVIs to approach artwork in a more self‐driven and engaging way that would be difficult to achieve with just an auditory stimulus. Tactile colour pictograms (TCPs), which are raised geometric patterns, are ideographic characters that are designed to enable PVIs to identify colours and interpret information by touch. In this article, three TCPs are introduced to code colours in the Munsell colour system. Each colour pattern consists of a basic cell size of 10 mm × 10 mm to represent the patterns consistently in terms of regular shape. Each TCP consists of basic geometric patterns that are combined to create primary, secondary, and tertiary colour pictograms of shapes indicating colour hue, intensity and lightness. Each TCP represents 29 colours including six hues; they were then further expanded to represent 53 colours. Two of them did not increase the cell size, the other increased the cell size 1.5 times for some colours, such as yellow‐orange, yellow, blue, and blue‐purple. Our proposed TCPs use a slightly larger cell size compared to most tactile patterns currently used to indicate colour, but code for more colours. With user experience and identification tests, conducted with 23 visually impaired adults, the effectiveness of the TCPs suggests that they were helpful for the participants.  相似文献   
4.
5.
Polymer‐grafted inorganic particles (PGIPs) are attractive building blocks for numerous chemical and material applications. Surface‐initiated controlled radical polymerization (SI‐CRP) is the most feasible method to fabricate PGIPs. However, a conventional in‐batch reaction still suffers from several disadvantages, including time‐consuming purification processes, low grafting efficiency, and possible gelation problems. Herein, a facile method is demonstrated to synthesize block copolymer–grafted inorganic particles, that is, poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA)‐b‐poly(N‐isopropylacrylamide) (PNIPAM)–grafted silica micro‐particles using continuous flow chemistry in an environmentally friendly aqueous media. Immobilizing the chain transfer agent and subsequent SI‐CRP can be accomplished sequentially in a continuous flow system, avoiding multi‐step purification processes in between. The chain length (MW) of the grafted polymers is tunable by adjusting the flow time or monomer concentration, and the narrower molar mass dispersity (Р< 1.4) of the grafted polymers reveals the uniform polymer chains on the particles. Moreover, compared with the in‐batch reaction at the same condition, the continuous system also suppresses possible gelation problems.  相似文献   
6.
An alternative for reducing emissions from marine fuel is to blend bio-oil from lignocellulose non-edible feedstocks to diesel fossil fuels. Phase diagrams of the ternary systems were built to represent the transition from heterogeneous regions to homogeneous regions. Four homogeneous blends of bio-oil of eucalyptus-bioethanol-marine gasoil were experimentally characterized with respect to the most important fuel parameters for marine engines: water content, flash point, low heating value, viscosity, and acidity. Blends with closer properties to marine gasoil replacement, lower costs, and environmental impacts should be tested for large engines.  相似文献   
7.
8.
9.
10.
Lobster krill (Munida genus) represents an under‐valued crustacean frequently caught on European fishing banks. In this work, its sensory, microbiological and biochemical qualities were evaluated during chilled storage. Additionally, the effects of a prestorage antimelanosic treatment consisting of soaking in sodium metabisulphite (SMB) solutions at two different concentrations (0.25% and 0.75%) were also studied. SMB prestorage treatment provided lobster specimens that still exhibited acceptable sensory quality after 10 days of storage, while control specimens were unacceptable at that time. SMB treatment also resulted in a significant (P < 0.05) inhibition of microbial growth, mainly of Enterobacteriaceae, psychrotrophes and proteolytic bacteria. Low lipid oxidation levels were observed for all batches; however, a significantly higher (P < 0.05) retention of polyunsaturated fatty acids was found in SMB‐treated lobster, especially in the 0.75% SMB batch. The results presented here open the way to the potential commercialisation of currently under‐utilised lobster krill as a chilled product.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号