首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   9篇
工业技术   226篇
  2023年   3篇
  2022年   7篇
  2021年   3篇
  2020年   8篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   13篇
  2013年   21篇
  2012年   13篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   6篇
  1997年   5篇
  1996年   7篇
  1995年   10篇
  1994年   3篇
  1993年   3篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
1.
Abstract

A helium-neon laser operating in three or more axial modes can generate, at a photo detector with a nonlinear response to intensity, beat signals with frequencies corresponding to the second differences between the frequencies of these modes. This paper presents a quantum-field theoretical treatment of the formation of such low-frequency beats, as well as experimental data demonstrating that interference effects corresponding to the production of such beats can be observed even at light levels at which the probability of at least one photon from each of the three modes being present simultaneously in the optical path is negligible.  相似文献   
2.
3.
4.
In this article, we have established the homotopy analysis method (HAM) for solving a few partial differential equations arising in engineering. This technique provides the solutions in rapid convergence series with computable terms for the problems with high degree of nonlinear terms appearing in the governing differential equations. The convergence analysis of the proposed method is also discussed. Finally, we have given some illustrative examples to demonstrate the validity and applicability of the proposed method.  相似文献   
5.
6.
7.
High-strength aluminum and titanium alloys with superior blast/ballistic resistance against armor piercing (AP) threats and with high vehicle light-weighing potential are being increasingly used as military-vehicle armor. Due to the complex structure of these vehicles, they are commonly constructed through joining (mainly welding) of the individual components. Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies [e.g., gas metal arc welding (GMAW)] and to obtain high-quality welds, solid-state joining technologies such as friction-stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military-vehicle-underbody structures is not straight forward and entails a comprehensive multi-prong approach which addresses concurrently and interactively all the aspects associated with the components/vehicle-underbody design, fabrication, and testing. One such approach is developed and applied in this study. The approach consists of a number of well-defined steps taking place concurrently and relies on two-way interactions between various steps. The approach is critically assessed using a strengths, weaknesses, opportunities, and threats (SWOT) analysis.  相似文献   
8.
Cutting tool temperature distribution was mapped using the IR-CCD technique during machining of carbon steel AISI 3115 and stainless steel AISI 316L under orthogonal cutting conditions using flat-face geometry inserts. The effect of work material treatment on tool temperature was investigated, and the results showed that AISI 3115 in heat-treated state displayed higher tool temperature than the as-rolled state. Stainless steel 316L with high sulphur content (0.027?wt.%) and calcium treatment displayed lower cutting tool temperature than the variant with low sulphur (0.009?wt.%). The experimental results were compared with theoretical tool temperature distributions based on a modified version of Komanduri and Hou??s analytical model. In particular, variable frictional heat source and secondary shear were introduced and modelling of the tool stress distribution on rake surface was also considered.  相似文献   
9.
Tin oxide hexagonal-shaped nanodiscs (SnO) and spherical nanoparticles (SnO2) have been prepared by using a simple household microwave irradiation method with an operating frequency of 2.45 GHz. This technique permits us to produce gram quantity of homogeneous nanoparticles in just 10 min. The crystallite size was evaluated from powder X-ray diffraction (XRD) studies and was in the 20 to 25 nm range. Transmission electron microscopy (TEM) analysis showed that the as prepared SnO form as hexagonal-shaped nanodiscs and upon subsequent annealing at 500 °C for 5 h in air, the SnO gets converted to spherical-shaped nanoparticles of SnO2. The SnO2 sample shows good sensitivity towards the relative humidity. The calculated response and recovery time were found to be 32 s and 25 s respectively. These results indicate promising applications of SnO2 nanoparticles in a highly sensitive environmental monitoring and humidity controlled electronic devices. The samples were further subjected to thermal analyses (TG–DTA) and UV–VIS diffusion reflectance spectroscopy (DRS) studies.  相似文献   
10.
In this work, the melting and solidification behaviour of paraffin phase change material encapsulated in a stainless steel spherical container has been studied experimentally. A computational fluid dynamics analysis has also been performed for the encapsulated phase change material (PCM) during phase change process. In the melting process, the hot air, used as the heat transfer fluid enters the test section and flows over the spherical capsule resulting in the melting of phase change material. In the solidification process, the ambient air flows over the capsule and received heat from phase change material resulting in the solidification of phase change material. In the computational fluid dynamics, the constant wall boundary condition is employed for both melting (75°C) and solidification (36°C) processes since the internal conductive resistance offered by the PCM is much higher compared to the outer surface convective resistance. The time required for complete solidification and melting of the phase change material obtained from the computational fluid dynamics analysis are validated with the experimental results and a reasonable agreement is achieved. The reason for the deviation between the results are analyzed and reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号