首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4082篇
  免费   139篇
  国内免费   4篇
工业技术   4225篇
  2021年   60篇
  2020年   42篇
  2019年   46篇
  2018年   70篇
  2017年   63篇
  2016年   86篇
  2015年   59篇
  2014年   107篇
  2013年   224篇
  2012年   159篇
  2011年   170篇
  2010年   165篇
  2009年   154篇
  2008年   151篇
  2007年   153篇
  2006年   131篇
  2005年   113篇
  2004年   80篇
  2003年   110篇
  2002年   98篇
  2001年   55篇
  2000年   44篇
  1999年   60篇
  1998年   212篇
  1997年   147篇
  1996年   119篇
  1995年   96篇
  1994年   86篇
  1993年   84篇
  1992年   46篇
  1991年   49篇
  1990年   45篇
  1989年   48篇
  1988年   41篇
  1987年   54篇
  1986年   45篇
  1985年   45篇
  1984年   58篇
  1983年   43篇
  1982年   42篇
  1981年   54篇
  1980年   55篇
  1979年   34篇
  1978年   40篇
  1977年   48篇
  1976年   49篇
  1975年   39篇
  1974年   20篇
  1973年   22篇
  1971年   21篇
排序方式: 共有4225条查询结果,搜索用时 15 毫秒
1.
In the chemical industry large amounts of saline wastewater occur. Its disposal into rivers is a considerable burden to the ecosystem. To strive for a circular economy and enable a viable raw material recycling, energy-efficient concentration processes are requisite. High-pressure reverse osmosis meets this criterion, but its industrial application demands suitable membrane elements that withstand the exceptional operation conditions and provide sufficient performance. Hence, new requirements regarding the design of spiral-wound elements arise. To identify those, specific performance-limiting effects need a better understanding.  相似文献   
2.
The onset of hybrid alumina-based composites, which combines two or more nano-particles within the alumina matrix has already shown promising improvements in the matrix material. However, variations in mechanical properties including the optimum compositions that give improved properties faced with the development of alumina-based composites require further studies to understand the underlying mechanisms and synergistic effects of the nano-particle additions on the alumina matrix. In the current study, the structure and properties of Al?O?-graphene (0.5 wt%) and Al?O?–ZrO? (4 wt% and 10 wt%) composites fabricated via hot-pressing was studied as a baseline for multiple combinations. Even though the addition of 10 wt%ZrO? resulted in a 23% reduction in the grain size of the alumina matrix, the 4 wt%ZrO? addition resulted in a 14% increase in grain size as compared to the parent alumina matrix. X-ray diffraction analysis revealed that there was approximately 85% monoclinic (m-ZrO2) vs. 15% tetragonal (t-ZrO2) crystal structures in the A4ZrO? sample whilst the A10ZrO? had approximately 93% m-ZrO2 vs. 7% t-ZrO2. The high-volume fraction of the monoclinic crystal structures in the A10ZrO? accounts for the induced microcracks in the sample since the transition from the ductile-tetragonal to brittle-monoclinic is associated with the exertion of compressive stresses on the alumina matrix by the associated elastic volume expansion of m-ZrO2. Also, the addition of 0.5 wt%graphene resulted in about 37% reduction in the grain size of the alumina matrix, and approximately 10% increase in hardness as a result of the distribution of graphene along the grain boundaries of the parent alumina matrix, which restricts grain coalescence and growth during processing. Furthermore, an increase up to 115% and 164% were observed in the fracture toughness (KIC) with the inclusion of 0.5 wt%graphene and 10 wt%ZrO? respectively, which was primarily ascribed to the fine-grained microstructures and toughening mechanisms of the intergranular graphene and ZrO? particles.  相似文献   
3.
Modeling of bulk sintering viscosity usually neglects the contribution of pore surface diffusion with respect to grain-boundary diffusion. This approximation is questionable at the high densification rates used today in advanced fast sintering techniques. A two-dimensional analysis of the problem shows that the influence of surface diffusion on bulk viscosity at high strain rate can be decomposed as the sum of two terms: a term linked to the change in pore surface curvature and a term linked to the change in grain-boundary size. The computational procedure relies on the partition of pore profile evolution into a transient component accounting for non-densifying phenomena and an asymptotic component accounting for strain-rate-controlled phenomena. The largest impact of surface diffusion is found to arise from the change in grain-boundary size. It follows a transition from Newtonian viscosity at low strain rate to non-Newtonian viscosity which, during densification, increases nearly linearly with strain rate. In some conditions, viscosity can then reach more than twice the value estimated when neglecting pore surface diffusion. Reversely, expansion is accompanied by a decrease in grain-boundary size which causes a decrease in viscosity and can lead to grain separation at high strain rate.  相似文献   
4.
In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision-making is shown. Then state-of-the-art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI-ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.  相似文献   
5.
Chiral 1,1’-binaphthyl-linked diporphyrin ‘tweezers’ (R)-1/(S)-1 and the corresponding zinc(II) complexes (R)-2/(S)-2 were prepared as chiral host molecules, and their utility for chiral analyses (especially enantiomeric excess (ee) determinations) were evaluated. Tris(1-n-dodecyl)porphyrins were used for the first time as the interacting units. Host capabilities of the diporphyrin tweezers were investigated by titrations with (R,R)- and (S,S)-cyclohexane-1,2-diamine (CHDA). The host molecules could be used as multichannel probes of ee by using UV-vis, circular dichroism (CD), fluorescence emission and 1H nuclear magnetic resonance (1H-NMR) methods. Chiral configurations could also be differentiated using CD or 1H-NMR spectroscopy. All three optical techniques give good resolution of ee with reasonable sensitivity considering the low concentrations used (ca. 10−6 mol·L−1). The ee determination of CHDA enantiomers using NMR spectroscopy is also possible because of the reasonably well separated resonances in the case of (R,R)- and (S,S)-CHDA. Non-metallated (R)-1/(S)-1 hosts could not be used to detect chiral information in a strongly acidic chiral guest. This work demonstrates the utility of 1,1’-binapthyl-linked chiral hosts for chiral analysis of ditopically interacting enantiomers.  相似文献   
6.
With the advent of mobile technologies, well-designed fraction apps can be used to help children gain fraction knowledge, a challenging topic for both teachers and students. The present pilot study adopted a quasi-experimental design to investigate whether children can learn fraction concepts equally well if half of the lesson time (20 min) is replaced with game-based learning. Keeping the total lesson time (40 min) identical, the control group (N = 33) received traditional instruction, and the experimental group (N = 32) was presented with a blended learning approach spending half of the class time (20 min) playing tablet-based fraction games, where each of the learners had their own tablet. The results suggested that in the posttest, the experimental group achieved similar learning gains to the control group and appear to have achieved better performance in the transfer test than the control group. This paper also discusses the efficiency of game-based learning, the mechanism of how fraction games might enhance learning, and the potential of integrating game-based learning in educational settings.  相似文献   
7.
Unreliable mobility values, and particularly greatly overestimated values and severely distorted temperature dependences, have recently hampered the development of the organic transistor field. Given that organic field‐effect transistors (OFETs) have been routinely used to evaluate mobility, precise parameter extraction using the electrical properties of OFETs is thus of primary importance. This review examines the origins of the various mobilities that must be determined for OFET applications, the relevant extraction methods, and the data selection limitations, which help in avoiding conceptual errors during mobility extraction. For increased precision, the review also discusses device fabrication considerations, calibration of both the specific gate‐dielectric capacitance and the threshold voltage, the contact effects, and the bias and temperature dependences, which must actually be handled with great care but have mostly been overlooked to date. This review serves as a systematic overview of the OFET mobility extraction process to ensure high precision and will also aid in improving future research.  相似文献   
8.
9.
Solar-driven photoelectrochemical water splitting technology is a promising avenue for a sustainable hydrogen production. In this work, a comprehensive 2-dimensional model is developed and numerically simulated with hematite (α-Fe2O3) as the principal photoelectrode. The model evaluates light absorption, charge transport and electrochemical reactions to elucidate the effects of light transmitting materials, electrolyte height and electrolyte velocity on hydrogen and oxygen gas production. Results indicated that major losses in photocurrents are attributed to the transparent conducting oxide while losses due to the electrolyte increase with its height. Gas concentrations increase with increasing photocurrent densities and also in the direction of the flow. Gas bubbles however decrease with increasing electrolyte velocity. From these results, light reception in the reactor is uneven and poses a bigger challenge due to the bias in gas bubble distribution. Prospects of upscaling tandem schemes hence not only lie in the semiconductor material combinations but rather in the proper integration of system components and operating conditions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号