首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   6篇
工业技术   130篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   6篇
  2019年   2篇
  2018年   6篇
  2017年   6篇
  2016年   9篇
  2015年   7篇
  2014年   7篇
  2013年   13篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
1.
2.
5-Acetamidoaniline-2-sulphonic acid has been evaluated as a substitute for 1-naphthylamine by synthesising and evaluating a parallel series of monoazo dyes derived from both components.  相似文献   
3.
Journal of Inorganic and Organometallic Polymers and Materials - The silver oxide nanoparticle was successfully synthesized using floral waste by simple one pot, cost effective method. The complete...  相似文献   
4.
Through our experience in synthesis, validation, test, and integration of the picoJava processor core in a system-on-chip (SoC) design we point out the challenges faced and issues to address in efficient reuse of a soft core  相似文献   
5.
6.
In this study, the simultaneous use of nanofluid and phase changing material as a coolant for photovoltaic fluid collector system and its effects are investigated experimentally. Two types of nanofluid are taken for the consideration, that is, ZnO and CuO, which are water‐based fluid. The experiments are performed in five different types of photovoltaic thermal system conventional: PT, PVT (ZnO), PVT (CuO), PCM medium (PVT/PCM/ZnO), and PCM medium (PVT/PCM/CuO). The results are obtained for surface temperature, energy, and thermal efficiency, and it is compared with each other. Further, the effect of the nanofluid as the effective alternative for pure deionized water is measured. From the results, it is evident that the PVT/PCM/CuO system minted 15% high electric output compared with convention module. Furthermore, the addition of the CuO nanofluid increases the thermal output significantly up to 8% for PVT and 12% for PCM without energy consumption. It also found that the nanofluid increases the overall energy efficiency of the system compared with convention PV.  相似文献   
7.
The artificial materials for bone implant applications are gaining more importance in the recent years. The series titania‐chitosan‐chondroitin 4–sulphate nanocomposites of three different concentrations (2:1:x, where x ‐ 0.125, 0.25, 0.5) have been synthesised by in situ sol–gel method and characterised by various techniques. The particle size of the nanocomposites ranges from 30–50 nm. The bioactivity, swelling nature, and the antimicrobial nature of the nanocomposites were investigated. The swelling ability and bioactivity of the composites is significantly greater and they possess high zone of inhibition against the microorganisms such as Staphylococcus aureus and Escherichia coli. The cell viability of the nanocomposites were evaluated by using MG‐63 and observed the composites possess high cell viability at low concentration. The excellent bioactivity and biocompatibility makes these nanocomposites a promising biomaterial for bone implant applications.Inspec keywords: titanium compounds, filled polymers, nanocomposites, bone, orthopaedics, biomedical materials, sol‐gel processing, nanofabrication, particle size, swelling, microorganisms, cellular biophysics, nanomedicine, prostheticsOther keywords: in situ synthesised TiO2 ‐chitosan‐chondroitin 4‐sulphate nanocomposites, bone implant applications, artificial materials, in situ sol‐gel method, particle size, swelling nature, antimicrobial nature, microorganisms, Staphylococcus aureus, Escherichia coli, cell viability, MG‐63, biomaterial, size 30 nm to 50 nm, TiO2   相似文献   
8.
A green atom‐economical method for the synthesis of highly functionalized 1‐amino and 1‐carbon substituted isoquinolines from the reaction of N′‐hydroxybenzimidamides and aryl ketoximes, respectively, with alkynes via pentamethylcyclopentadienylcobalt(III)‐catalyzed C H/N O bond activation is described. The external oxidant‐free annulation reaction uses the =NOH moiety in N′‐hydroxybenzimidamides or N‐aromatic ketone oximes as the directing group and internal oxidant. This first row transition metal‐catalyzed annulation serves as an efficient alternative for the synthesis of isoquinolines, as water is the only by‐product and expensive noble metals such as rhodium(III), iridium(III), palladium(II), and ruthenium(II) are not required. The reaction proceeds via C H activation, alkyne insertion, reductive elimination, and N O activation.

  相似文献   

9.
Palladium nanoparticles (Pd‐BNP) stabilized by a binaphthyl‐backbone can be efficiently used for the chemoselective reduction of aldehydes in the presence of hydrogen at room temperature in water. The Pd‐BNP catalyst is easily recovered and reused for five catalytic cycles.

  相似文献   

10.
Thermal evaluation of vertical greenery systems for building walls   总被引:1,自引:0,他引:1  
This research involves the study of 8 different vertical greenery systems (VGSs) installed in HortPark to evaluate the thermal impacts on the performance of buildings and their immediate environment based on the surface and ambient temperatures. VGSs 3 and 4 have the best cooling efficiency according to the maximum temperature reduction of the wall and substrate surfaces. These results point to the potential thermal benefits of vertical greenery systems in reducing the surface temperature of buildings facades in the tropical climate, leading to a reduction in the cooling load and energy cost. In terms of the lowest diurnal range of average wall surface temperature fluctuation, VGSs 4 and 1 show the highest capacities. No vertical greenery system performs well in term of the diurnal range of average substrate temperature fluctuation. By limiting the diurnal fluctuation of wall surface temperatures, the lifespan of building facades is prolonged, slowing down wear and tear as well as savings in maintenance cost and the replacement of façade parts. The effects of vertical greenery systems on ambient temperature are found to depend on specific vertical greenery systems. VGS 2 has hardly any effect on the ambient temperature while the effects of VGS 4 are felt as far as 0.60 m away. Given the preponderance of wall facades in the built environment, the use of vertical greenery systems to cool the ambient temperature in building canyons is promising. Furthermore, air intakes of air-conditioning at a cooler ambient temperature translate into saving in energy cooling load.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号