首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2361篇
  免费   139篇
工业技术   2500篇
  2023年   16篇
  2022年   18篇
  2021年   69篇
  2020年   48篇
  2019年   55篇
  2018年   58篇
  2017年   46篇
  2016年   72篇
  2015年   58篇
  2014年   94篇
  2013年   136篇
  2012年   102篇
  2011年   156篇
  2010年   123篇
  2009年   111篇
  2008年   128篇
  2007年   104篇
  2006年   71篇
  2005年   55篇
  2004年   54篇
  2003年   54篇
  2002年   44篇
  2001年   39篇
  2000年   32篇
  1999年   44篇
  1998年   171篇
  1997年   107篇
  1996年   63篇
  1995年   39篇
  1994年   35篇
  1993年   43篇
  1992年   16篇
  1991年   30篇
  1990年   13篇
  1989年   13篇
  1988年   16篇
  1987年   22篇
  1986年   16篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   12篇
  1981年   5篇
  1980年   7篇
  1979年   6篇
  1978年   6篇
  1977年   15篇
  1976年   19篇
  1974年   7篇
  1971年   5篇
排序方式: 共有2500条查询结果,搜索用时 16 毫秒
1.
Na1/2Bi1/2TiO3-based materials have been earmarked for one of the first large-volume applications of lead-free piezoceramics in high-power ultrasonics. Zn2+-doping is demonstrated as a viable route to enhance the thermal depolarization temperature and electromechanically harden (1-y)Na1/2Bi1/2TiO3-yBaTiO3 (NBT100yBT) with a maximum achievable operating temperature of 150 °C and mechanical quality factor of 627 for 1 mole % Zn2+-doped NBT6BT. Although quenching from sintering temperatures has been recently touted to enhance TF-R, with quenching the doped compositions featuring an additional increase in TF-R by 17 °C, it exhibits negligible effect on the electromechanical properties. The effect is rationalized considering the missing influence on conductivity and therefore, negligible changes in the defect chemistry upon quenching. High-resolution diffraction indicates that Zn2+-doped samples favor the tetragonal phase with enhanced lattice distortion, further corroborated by 23Na Nuclear Magnetic Resonance investigations.  相似文献   
2.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
3.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
4.
Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.  相似文献   
5.
6.
ABSTRACT

We review the role of the oak barrel as an active vessel for wine maturation. We present a historical background to highlight that previously established aspects of processes occurring with wine inside the oak barrel are still without confirmation. We argue that recently published new findings on the topic are determining factors in defining the manner in which the oak barrel works with wine. Several studies have been published reviewing how the wine barrel functions as an active vessel that releases chemical compounds into the wine, improving its physical, chemical, and sensory properties. Nevertheless, there are hardly any studies that describe how a wine barrel functions as an active vessel. The present review details the main factors affecting the gas exchange capacity of the barrel, such as the pressure drop generated within the barrel, the formation of a headspace, the effect of wood anatomy, the different oxygen entry routes, the role of wood moisture content and soluble ellagitannins, and the effect of barrel toasting on cooperage. Finally, a hypothesis is proposed regarding the function of the barrel as an active vessel, which determines the manner in which it interacts with the wine that it contains during aging.  相似文献   
7.
正Axel酒店坐落于马德里文学街区中心的一栋19世纪的大楼内,在西班牙"黄金世纪"时期,这一地区曾是一个重要的文化中心。经过岁月的洗礼,大楼至今仍保留着橙色的外墙和典雅的阳台。接手此次酒店设计的是西班牙室内设计工作室EL EQUIPO CREATIVO,设计师以西班牙著名导演佩德罗·阿莫多瓦(Pedro Almodóvar)的电影为灵感,在酒店内融入了马德里非常传统并广受欢迎的特色元素和一些著名的视觉元素。  相似文献   
8.
Light induced catalytic processes have attracted significant attention during the last years for wastewater treatment due to their efficiency in decomposition of organic contaminants. In this study we report the synthesis of graphene oxide (GO)/ZnO hybrid layers with high photocatalytic efficiency using laser radiation. The results show that the hybrid layers exhibit much improved photodecomposition efficiency as compared to pure GO or ZnO both under UV and visible-light irradiation. The enhanced photocatalytic efficiency of the hybrid as compared to the reference pure ZnO and GO layers was attributed to the contribution of GO to the separation and transport of the photogenerated charge carriers. Additionally, under visible light irradiation the organic molecules can act as first sensitizers in the degradation process. The recyclability of the layers was also investigated through repetitive photodegradation cycles under UV- or visible-light irradiation. After consecutive degradation runs, the hybrid photocatalyst layers were still stable and retained high degradation efficiency, ensuring reusability. The photocatalytic activity of the layers was correlated with the gradual change of their chemical structure during consecutive degradation cycles. Owing to the high photodegradation efficiency, reusability, and ease of recovery the synthesised hybrid layers consisting of easily available materials are suitable for environmental purification applications.  相似文献   
9.
The stability of the electrocaloric effect under electric field cycling is an important consideration in the development of solid-state cooling devices. Here we report measurements carried out on Ba(Zr0.2Ti0.8)O3 ceramics which reveal that the adiabatic temperature change, polarization-electric field hysteresis loops and dielectric permittivity/loss show stable behavior up to 105 cycles. We further demonstrate that the loss in electrocaloric response observed after 105 cycles is associated with the migration of oxygen vacancies. As a result, the electrical properties of the material are changed leading to an increase in leakage current and Joule heating. Reversing the polarity of the electric field after every 105 cycles changes the migration direction of oxygen vacancies, thereby preventing charge accumulation at grain boundaries and electrodes. By doing so, the electrocaloric stability is improved and the adiabatic temperature remains constant even after 106 cycles, much higher than achieved in commercially available barium titanate ceramics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号