首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   5篇
工业技术   80篇
  2023年   1篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   21篇
  2015年   6篇
  2014年   4篇
  2013年   8篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1975年   1篇
排序方式: 共有80条查询结果,搜索用时 17 毫秒
1.
The development of materials in two-dimensions has been established as an effective approach to improve their thermoelectric performance for renewable energy production. In this article, we generated monolayers of the orthorhombic structured lead-chalcogenides PbX (X = S, Se, and Te) for room-temperature thermoelectric applications. The Density functional theory and semiclassical Boltzmann transport theory-based computational approaches have been adopted to carry out this study. The band structures of PbX monolayers exhibited narrow indirect bandgaps with a large density of states corresponding to their bandgap edges. Accordingly, substantial electrical conductivities and Seebeck coefficients have been obtained at moderate level doping that has caused significant thermoelectric power factors (PFs) and figures-of-merit (zT) ~1. The single-layered PbX showed anisotropic dispersion of electronic states in the band structure. A relatively lighter effective mass of charge carriers has been extrapolated from the bands oriented in the y-direction than that of the x-direction. As a result, the electrical conductivities and PFs have been observed larger in the y-direction. The optimum PFs recorded for single-layered PbS, PbSe, and PbTe in y-direction amounts to 9.90 × 1010 W/mK2s at 1.0 eV, 10.40 × 1010 W/mK2s at 0.82 eV, and 10.80 × 1010 W/mK2s 0.66 eV respectively. Moreover, a slight increase in p-type doping is found to improve the x-component of the PF, whereas n-type doping has led to improvement in the y-component of PF. Our results show an improved thermoelectric response of PbX monolayer (PbTe in particular) than their bulk counterparts reported in the literature, which indicates the promise of PbX monolayers for nanoscale thermoelectric applications at room temperature.  相似文献   
2.
3.
In this article, various types of carbon nanofiller and modification of graphene oxide and graphene for the preparation of polymer-based nanocomposites are reviewed. Recently, polymer/graphene and graphene oxide-based materials have attracted tremendous interest due to high performance even at low filler content. The property enhancement is due to the high aspect ratio, high surface area and excellent electrical, thermal and mechanical properties of nanofiller. Different techniques have been employed to fabricate polymer/graphene and graphene oxide nanocomposite with uniform dispersion due to fine matrix/nanofiller interaction. Here we discuss the structure, properties and preparation of these nanocomposites.  相似文献   
4.
In this review, an overview of various types of nanofillers is presented with special emphasis on structure, synthesis and properties of carbon nanotube, nanodiamond, and nanobifiller of carbon nanotube/nanodiamond, carbon nanotube/graphene oxide and carbon nanotube/graphene. In addition, polymer/carbon nanotube, polymer/nanodiamond, and polymer/nanobifiller composites have been discussed. The efficacy of different fabrication techniques for nanocomposites (solution casting, in-situ, and melt blending method) and their properties were also discussed in detail. Finally, we have summarized the challenges and future prospects of polymer nanocomposites reinforced with carbon nanofillers hoping to facilitate progress in the emerging area of nanobifiller technology.  相似文献   
5.
Black rice and lavender are promising sources of bioactives, in terms of anthocyanins and essential oils. Their bioaccessibility were improved by microencapsulation, followed by mixing in order to benefit both from colour and flavour, along with radical scavenging and biological properties. The mixed powder showed a satisfactory anthocyanins of 2.55 mg g−1 DW, leading to a radical scavenging activity of 65.14 mmol g−1 DW. The powder displayed an inhibitory effect against α-glucosidase (~49%) and α-amylase (39%), respectively, with a controlled release in intestinal environment. To further examine the functional properties, the powder was added to a food model system. During storage, a release in anthocyanins and flavonoids were found, leading to an increase in radical scavenging activity. The sensorial analysis showed that supplemented biscuits were appreciated for colour and lavender aroma. The obtained results were promising in tailoring the health benefits of secondary metabolites, underutilised in human’s nutrition due to their low stability and bioavailability.  相似文献   
6.
7.
Five anthocyanins were detected in the sweet cherry extract as follows: cyanidin 3-rutinoside, cyanidin 3-glucoside, peonidin 3-rutinoside, peonidin 3-glucoside, and pelargonidin 3-rutinoside, whereas the cyanidin 3-rutinoside was found to be in the highest amount. The effect of thermal treatment on the degradation of the polyphenolic compounds in sweet cherry extract was investigated in the range of 70–120 °C by means of fluorescence spectroscopy and spectrophotometric techniques. The fluorescence spectra were dominated by emission bands with maximum ranging from 356 nm at 25 °C to 350 nm at 110 °C. The heating of sweet cherry extract resulted in structural changes that led to a significant decrease in fluorescence intensity when increasing temperature. Degradation rate constants were estimated using a fractional conversion kinetic model. The activation energy values revealed a higher-temperature dependence of antioxidant activity, followed by anthocyanins, total polyphenols, and total flavonoids.  相似文献   
8.
This review mainly concentrates on polyvinyl chloride/carbon nanofiller-based composites. The present study focused upon synthetic strategies and relevance of polyvinyl chloride/graphite, polyvinyl chloride/graphene, polyvinyl chloride/graphene oxide, and polyvinyl chloride/carbon nanotube nanocomposite. Among carbon-based reinforcement, graphene oxide nanofiller depicted better dispersion in polyvinyl chloride matrix. The electrical, mechanical, thermal, and morphological properties of these nanocomposites are also discussed. Moreover, future potential of these materials are elucidated. There is relatively little literature available regarding polyvinyl chloride-based nanocomposite. The main aim of this article is to therefore particularize the polyvinyl chloride-based nanocomposites and expose their concealed properties to enable better use of these new materials in different technical fields.  相似文献   
9.
This paper reports and discusses the results of a field survey conducted by a joint scientific group from Japan and Indonesia to assess the geotechnical aspects of the Sumatra earthquake (Mw=7.6) of September 30, 2009. The studied area included the Padang and Pariaman cities, where a number of buildings collapsed as a result of strong shaking, and a mountainous part of the Pariaman district, a place where massive landslides buried several villages, claiming more than 400 human lives. The main objective of the survey was to investigate the causes and mechanisms of catastrophic landslides; however, other geotechnical problems such as lateral spread and liquefaction were also addressed. Field observations indicated that the catastrophic landslides occurred on relatively gentle slopes, then mobilized into debris flows, and traveled several hundred meters from their points of origin. The failure surfaces developed along the boundary of highly weathered pumice tuff with more intact and less weathered bedrock. Data from a portable cone penetration test showed that the sliding material was rather weak, having SPT N-values in the range of 5-10. The results of the field survey suggested that the main cause of slope instability was high pore-water pressures that generated in the soil mass during the earthquake.  相似文献   
10.
This article reviews the research and progress on polystyrene and nanoclay-based nanocomposite. Polystyrene is one of the most extensively used commercial polymers in the world. This review is designed to be an expansive source for polystyrene–clay nanocomposite research, including synthesis, characterization, structure/property relationship, manufacturing techniques, and applications considering thermal, mechanical, barrier, electrical conductivity, non-flammability, and biodegradability. The frequently used clays with polystyrene are montmorillonite, bentonite, hectorite, and kaolinite. The polystyrene–clay nanocomposite has several interesting commercial significances in packaging, automotive, fuel cell, construction, and electrical materials. Finally, future challenges toward the technical applications of these advance materials have been discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号