首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34211篇
  免费   14806篇
  国内免费   3篇
工业技术   49020篇
  2023年   4篇
  2022年   7篇
  2021年   204篇
  2020年   1418篇
  2019年   3159篇
  2018年   3081篇
  2017年   3414篇
  2016年   3866篇
  2015年   3947篇
  2014年   3846篇
  2013年   4918篇
  2012年   2647篇
  2011年   2291篇
  2010年   2595篇
  2009年   2478篇
  2008年   2023篇
  2007年   1861篇
  2006年   1622篇
  2005年   1351篇
  2004年   1315篇
  2003年   1168篇
  2002年   808篇
  2001年   530篇
  2000年   234篇
  1999年   48篇
  1998年   30篇
  1997年   32篇
  1996年   13篇
  1995年   4篇
  1994年   17篇
  1993年   8篇
  1992年   14篇
  1991年   12篇
  1990年   9篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   9篇
  1985年   5篇
  1983年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1890年   1篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
2.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
3.
Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such as Escherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such as Staphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such as S. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry  相似文献   
4.
This article develops practical methods for Bayesian inference in the autoregressive fractionally integrated moving average (ARFIMA) model using the exact likelihood function, any proper prior distribution, and time series that may have thousands of observations. These methods utilize sequentially adaptive Bayesian learning, a sequential Monte Carlo algorithm that can exploit massively parallel desktop computing with graphics processing units (GPUs). The article identifies and solves several problems in the computation of the likelihood function that apparently have not been addressed in the literature. Four applications illustrate the utility of the approach. The most ambitious is an ARFIMA(2,d,2) model for the Campito tree ring time series (length 5405), for which the methods developed in the article provide an essentially uncorrelated sample of size 16,384 from the exact posterior distribution in under four hours. Less ambitious applications take as little as 4 minutes without exploiting GPUs.  相似文献   
5.
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.  相似文献   
6.
7.
Natural mycelial exopolysaccharide (EPS) and endopolysaccharide (ENS) extracted from bioreactor-cultivated European Ganoderma applanatum mushrooms are of potential high commercial value for both food and adjacent biopharmaceutical industries. In order to evaluate their potential toxicity for aquaculture application, both EPS (0.01–10 mg/mL) and ENS (0.01–10 mg/mL) extracts were tested for Zebrafish Embryo Toxicity (ZFET); early development effects on Zebrafish Embryos (ZE) were also analyzed between 24 and 120 h post-fertilization (HPF). Both EPS and ENS are considered non-toxic with LC50 of 1.41 mg/mL and 0.87 mg/mL respectively. Both EPS and ENS did not delay hatching and teratogenic defect towards ZE with <1.0 mg/mL, respectively. No significant changes in the ZE heart rate were detected following treatment with the two compounds tested (EPS: 0.01–10 mg/mL: 176.44 ± 0.77 beats/min and ENS: 0.01–10 mg/mL: 148.44 ± 17.75 beats/min) compared to normal ZE (120–180 beats/min). These initial findings support future pre-clinical trials in adult fish models with view to safely using EPS and ENS as potential feed supplements for supplements for development of the aquaculture industry.  相似文献   
8.
When solving a mathematical problem, students who do not have sufficient conceptual understanding may perform poorly and exhibit misconceptions. This study was aimed to examine students' conceptual understanding and significant misconceptions when solving number sense‐related problems. An online three‐tier diagnostic test was administered to 125 fifth‐grade students with varied socio‐economic backgrounds in Hong Kong. Only 14.40% of the students exhibited high performance with high confidence, indicating that these students had a profound conceptual understanding of number sense. In addition, the majority of the students (66.40%) did not demonstrate number sense; these students exhibited several significant misconceptions and could solve the questions only by using a rule‐based method or guessing. Accordingly, most students performed unsatisfactorily on number sense‐related problems. This study is imperative in identifying early predictors and provides information for further compatible interventions in the teaching and learning of number sense in Hong Kong in particular and worldwide in general.  相似文献   
9.
10.
Porous architectures are important in determining the performance of lithium–sulfur batteries (LSBs). Among them, multiscale porous architecutures are highly desired to tackle the limitations of single‐sized porous architectures, and to combine the advantages of different pore scales. Although a few carbonaceous materials with multiscale porosity are employed in LSBs, their nonpolar surface properties cause the severe dissolution of lithium polysulfides (LiPSs). In this context, multiscale porous structure design of noncarbonaceous materials is highly required, but has not been exploited in LSBs yet because of the absence of a facile method to control the multiscale porous inorganic materials. Here, a hierarchically porous titanium nitride (h‐TiN) is reported as a multifunctional sulfur host, integrating the advantages of multiscale porous architectures with intrinsic surface properties of TiN to achieve high‐rate and long‐life LSBs. The macropores accommodate the high amount of sulfur, facilitate the electrolyte penetration and transportation of Li+ ions, while the mesopores effectively prevent the LiPS dissolution. TiN strongly adsorbs LiPS, mitigates the shuttle effect, and promotes the redox kinetics. Therefore, h‐TiN/S shows a reversible capacity of 557 mA h g?1 even after 1000 cycles at 5 C rate with only 0.016% of capacity decay per cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号