首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   21篇
  国内免费   2篇
工业技术   422篇
  2023年   10篇
  2022年   12篇
  2021年   17篇
  2020年   19篇
  2019年   15篇
  2018年   21篇
  2017年   27篇
  2016年   25篇
  2015年   13篇
  2014年   31篇
  2013年   31篇
  2012年   18篇
  2011年   23篇
  2010年   25篇
  2009年   31篇
  2008年   27篇
  2007年   13篇
  2006年   13篇
  2005年   8篇
  2004年   5篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1992年   1篇
排序方式: 共有422条查询结果,搜索用时 234 毫秒
1.
Ceramic Matrix Composites (CMCs) have many interesting properties, mainly light weight, cost efficiency, low density, high compressive strength, high hardness and durability. Hence, they emerged as a boon to the development of personnel armors in the past. The current work aims to review various new methodologies adapted for the reinforcement of Alumina (Al2O3) CMCs in recent times, including some of the interesting results obtained with respect to mechanical properties, suitability of the synthesized composites for armor applications, and the upcoming reinforcement trends. Finally, studies related to reinforcement in Al2O3 CMCs, specifically towards armor applications have been consolidated to arrive at some of the important inferences for concluding reasonably.  相似文献   
2.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
3.
Neural Computing and Applications - A multi-robot-based fault detection system for railway tracks is proposed to eliminate manual human visual inspection. A hardware prototype is designed to...  相似文献   
4.
The rise of Web 2.0 is signaled by sites such as Flickr, del.icio.us, and YouTube, and social tagging is essential to their success. A typical tagging action involves three components, user, item (e.g., photos in Flickr), and tags (i.e., words or phrases). Analyzing how tags are assigned by certain users to certain items has important implications in helping users search for desired information. In this paper, we develop a dual mining framework to explore tagging behavior. This framework is centered around two opposing measures, similarity and diversity, applied to one or more tagging components, and therefore enables a wide range of analysis scenarios such as characterizing similar users tagging diverse items with similar tags or diverse users tagging similar items with diverse tags. By adopting different concrete measures for similarity and diversity in the framework, we show that a wide range of concrete analysis problems can be defined and they are NP-Complete in general. We design four sets of efficient algorithms for solving many of those problems and demonstrate, through comprehensive experiments over real data, that our algorithms significantly out-perform the exact brute-force approach without compromising analysis result quality.  相似文献   
5.
Reactive power compensation is an important issue in the control of electric power system. Reactive power from the source increases the transmission losses and reduces the power transmission capability of the transmission lines. Moreover, reactive power should not be transmitted through the transmission line to a longer distance. Hence Flexible AC Transmission Systems (FACTS) devices such as static compensator (STATCOM) unified power flow controller (UPFC) and static volt–ampere compensator (SVC) are used to alleviate these problems. In this paper, a voltage source converter (VSC) based STATCOM is developed with PI and Artificial Neural Network Controller (ANNC). The conventional PI controller has more tuning difficulties while the system parameter changes, whereas a trained neural network requires less computation time. The ANNC has the ability to generalize and can interpolate in between the training data. The ANNC designed was tested on a 75 V, ±3KVAR STATCOM in real time environment via state-of-the-art of digital signal processor advanced control engineering (dSPACE) DS1104 board and it was found that it was producing better results than the PI controller.  相似文献   
6.
Buoyancy driven convection in a square cavity induced by two mutually orthogonal arbitrarily placed heated thin plates is studied numerically under isothermal and isoflux boundary conditions. The flow is assumed to be two-dimensional. The coupled governing equations were solved by the finite difference method using the Alternating Direction Implicit technique and Successive Over Relaxation method. The steady state results are depicted in terms of streamline and isotherm plots. It is found that the resulting convection pattern is stronger for the isothermal boundary condition. A better overall heat transfer can be achieved by placing one of the plates far away from the center of the cavity for isothermal boundary condition and near the center of the cavity for isoflux boundary condition.  相似文献   
7.
For a long time, legal entities have developed and used crime prediction methodologies. The techniques are frequently updated based on crime evaluations and responses from scientific communities. There is a need to develop type-based crime prediction methodologies that can be used to address issues at the subgroup level. Child maltreatment is not adequately addressed because children are voiceless. As a result, the possibility of developing a model for predicting child abuse was investigated in this study. Various exploratory analysis methods were used to examine the city of Chicago’s child abuse events. The data set was balanced using the Borderline-SMOTE technique, and then a stacking classifier was employed to ensemble multiple algorithms to predict various types of child abuse. The proposed approach successfully predicted crime types with 93% of accuracy, precision, recall, and F1-Score. The AUC value of the same was 0.989. However, when compared to the Extra Trees model (17.55), which is the second best, the proposed model’s execution time was significantly longer (476.63). We discovered that Machine Learning methods effectively evaluate the demographic and spatial-temporal characteristics of the crimes and predict the occurrences of various subtypes of child abuse. The results indicated that the proposed Borderline-SMOTE enabled Stacking Classifier model (BS-SC Model) would be effective in the real-time child abuse prediction and prevention process.  相似文献   
8.
Sentiment Analysis (SA) is one of the subfields in Natural Language Processing (NLP) which focuses on identification and extraction of opinions that exist in the text provided across reviews, social media, blogs, news, and so on. SA has the ability to handle the drastically-increasing unstructured text by transforming them into structured data with the help of NLP and open source tools. The current research work designs a novel Modified Red Deer Algorithm (MRDA) Extreme Learning Machine Sparse Autoencoder (ELMSAE) model for SA and classification. The proposed MRDA-ELMSAE technique initially performs preprocessing to transform the data into a compatible format. Moreover, TF-IDF vectorizer is employed in the extraction of features while ELMSAE model is applied in the classification of sentiments. Furthermore, optimal parameter tuning is done for ELMSAE model using MRDA technique. A wide range of simulation analyses was carried out and results from comparative analysis establish the enhanced efficiency of MRDA-ELMSAE technique against other recent techniques.  相似文献   
9.

The World Wide Web(WWW) comprises a wide range of information, and it is mainly operated on the principles of keyword matching which often reduces accurate information retrieval. Automatic query expansion is one of the primary methods for information retrieval, and it handles the vocabulary mismatch problem often faced by the information retrieval systems to retrieve an appropriate document using the keywords. This paper proposed a novel approach of hybrid COOT-based Cat and Mouse Optimization (CMO) algorithm named as hybrid COOT-CMO for the appropriate selection of optimal candidate terms in the automatic query expansion process. To improve the accuracy of the Cat and Mouse Optimization (CMO) algorithm, the parameters are tuned with the help of the Coot algorithm. The best suitable expanded query is identified from the available expanded query sets also known as candidate query pools. All feasible combinations in this candidate query pool should be obtained from the top retrieved documents. Benchmark datasets such as the GOV2 Test Collection, the Cranfield Collections, and the NTCIR Test Collection are utilized to assess the performance of the proposed hybrid COOT-CMO method for automatic query expansion. This proposed method surpasses the existing state-of-the-art techniques using many performance measures such as F-score, precision, and mean average precision (MAP).

  相似文献   
10.
Aluminum metal matrix composites (AMMCs) explicitly show better physical and mechanical properties as compared to aluminum alloys and results in a more preferred material for a wide range of applications. The addition of reinforcements embargo AMMCs employment to industry requirements by increasing order of machining complexity. However, it can be machined with a high order of surface integrity by nonconventional approaches like abrasive water jet machining. Hybrid aluminum alloy composites were reinforced by B4C (5–15?vol%) and solid lubricant hBN (15?vol%) particles and fabricated using a liquid metallurgy route. This research article deals with the experimental investigation on the effect of process parameters such as mesh size, abrasive flow rate, water pressure and work traverse speed of abrasive water jet machining on hybrid AA6061-B4C-hBN composites. Water jet pressure and traverse speed have been proved to be the most significant parameters which influenced the responses like kerf taper angle and surface roughness. Increase in reinforcement particles affects both the kerf taper angle and surface roughness. SEM images of the machined surface show that cutting wear mechanism was largely operating in material removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号