首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   10篇
  国内免费   23篇
工业技术   81篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   9篇
  2019年   8篇
  2018年   7篇
  2016年   1篇
  2015年   3篇
  2013年   6篇
  2012年   4篇
  2011年   4篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
排序方式: 共有81条查询结果,搜索用时 250 毫秒
1.
以新型褶式滤筒为研究对象,选取滤筒褶数N_2、褶夹角θ、褶高h、过滤风速v为影响因子,除尘器压力损失为响应值,基于响应曲面法分析影响因子对压力损失的影响,建立滤筒除尘器压力损失的预测模型并得到滤筒褶皱结构最优参数。以滤筒内径D、筒体高度D_1为标准尺寸,依据相关国家标准设计滤筒筒体部分;以锥体高度D_2、锥体上圆直径D_3为系列尺寸,利用尺寸变化法设计锥体部分;通过Access软件建立滤筒产品数据库。结果表明:当θ=5.2°,N_2=50,v=0.01 m/s,h=0.035 m时,除尘器压力损失最低;当D_1=1 000 mm,D=320 mm时,D_2和D_3最佳值分别为600,130 mm,故采用D_2/D_1=0.6,D_3/D=0.4的比值设计相应滤筒锥体系列。  相似文献   
2.
为满足细络联联接的细纱机和络筒机各自所需的温湿度条件,本文采用一种通过调整送风口结构参数来精确控制送风方向及气流分布的定向送风口,利用CFD技术对不同送风口结构下的车间气流分布进行数值模拟,分析对比速度场、温度场及湿度场的分布特点。结果表明:当导流板角度一定时,整流格栅的通孔直径从10 mm增大至32 mm,工作区域的风量和温度分布更均匀,相对湿度可以满足各自工艺需求,但机器周围风速偏高。综合考虑确定通孔直径为30 mm时的送风口结构为最优结构,并试验验证。研究结果可以为纺织空调送风口结构的优化设计提供理论指导。  相似文献   
3.
基于Visual C#和MATLAB语言的混合编程,提出纤维过滤介质过滤性能计算的软件开发方案,实现对纤维过滤介质三维结构的重建及其过滤性能的计算。首先通过扫描电子显微镜(Scanning Electron Microscope,SEM)成像获得过滤介质内部微观结构二维图像,提取过滤介质的几何参数,根据纤维半径和方向等参数重建过滤介质的三维结构,利用经典的经验公式计算过滤介质的压降和效率。以Visual Studio 2010为开发平台,Visual C#为开发语言,基于dll文件调用MATLAB程序,最终完成该软件的开发。与利用数值模拟或实验方法计算过滤介质性能相比,利用该软件计算过滤介质的过滤性能,方法简单、便捷。  相似文献   
4.
基于CFD-DEM(离散单元法)方法模拟了微细颗粒物在纤维过滤介质中的气-固两相流动特性,模拟时,充分考虑了颗粒群组成、粒径分布、颗粒间及颗粒与纤维间的反弹作用以及颗粒团聚等因素,分析了纤维过滤中颗粒群的运动特性和微细颗粒的沉积形式。结果表明:采用CFD-DEM模拟过滤介质的过滤过程以及微细颗粒在介质表面沉积过程和形式的方法是方便且可行的,模拟结果与前人的实验观测结果基本吻合;在过滤过程中,表面过滤的贡献较大,大部分的颗粒在介质表面即被捕集,进入到介质内部的部分粒径较小的颗粒经深层过滤作用而被捕集;大量的颗粒捕集是由颗粒-颗粒捕集机制来实现的;不同颗粒体系的颗粒群其过滤效果也有所差别,对于本文所研究的过滤介质模型,多颗粒体系的过滤效率比单一的颗粒体系的过滤效率高20%左右。  相似文献   
5.
结合Matlab软件和数值计算前处理软件Gambit中的Journal文件建立了随机排列纤维过滤器模型,利用计算流体动力学(CFD)技术对4种随机排列纤维过滤器内部气-固两相流动特性进行数值研究,并将数值计算值和经典模型及实验关联式进行了比较。结果表明:利用论文提出的建模方法可以得到与实际纤维过滤器相似的模型。过滤器压力损失的数值计算预测值和实验关联式吻合较好,误差均在2%以内。不同结构过滤器收集效率的数值计算结果和理论模型的趋势基本一致,且不同粒径范围的颗粒收集机理也不同。对于小粒径颗粒(dp0.5μm),主要由布朗扩散起作用,dp1.5μm时,惯性碰撞贡献较大,当0.5μm≤dp≤1.5μm时,2种机理作用都较弱。另外,纤维直径和纤维填充密度分布会影响纤维过滤器的过滤性能,论文中,结构1(纤维直径和填充密度沿气流方向减小)的过滤器和结构3(纤维直径和填充密度沿气流方向增加)的收集效率高于结构2(在气流方向上纤维直径减小而填充密度增大)和4(在气流方向上纤维直径增大而填充密度减小),而压力损失则恰恰相反。结构1在大颗粒的收集上好于结构3,对于小颗粒则正好相反。结构4对于所有类型的颗粒的收集都要好于结构2。  相似文献   
6.
室内的热舒适性直接影响着人们的健康和工作效率。针对该问题,采用计算流体力学(CFD)方法,选用零方程模型对空调系统下送上回、上送上回、上送下回三种通风方式进行模拟研究,并对温度场、PMV、PPD、空气龄的模拟结果进行分析比较。研究结果表明:和其它两种通风方式相比,上送上回通风方式室内工作区最低气温都在25℃以上,最高气温基本上在28℃以下;在工作人员呼吸平面处空气龄在700s左右,该区域的PMV和PPD分别为0.8和22%左右,可以获得较好的热舒适性。  相似文献   
7.
高效空气过滤器内部气相流场的数值研究   总被引:1,自引:0,他引:1  
利用计算流体力学(Computational fluid dynamics.CFD)对三维交错排列的高效空气过滤器内部气相流场的特性进行数值研究,计算了不同迎面风速下过滤器的阻力和纤维的阻力系数,并将数值预测值与文献中经验公式预测值进行比较。结果表明:从过滤器入口的第一排纤维到最后一排纤维之间的流场呈周期性变化;过滤器阻力随着迎面风速的增加呈线性增加,与其它经验模型比较,过滤器阻力的数值预测值与Davies的实验关联式吻合较好;过滤器内部纤维的阻力系数随雷诺数的增加而减小,阻力系数的数值预测值和其他的经验公式预测值和理论计算值吻合较好。  相似文献   
8.
含相变材料的定型复合建材储能调温及力学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
使用微胶囊化和直接吸附法两种方式将相变材料与水泥结合分别制成了含相变微胶囊水泥基复合建材及含相变材料水泥基复合建材,搭建实验测试系统,对复合建材的调温储能特性进行了测试。微胶囊化相变材料和纯相变材料的加入对水泥基建材的微观结构形貌具有较为明显的影响。热重曲线显示纯水泥、相变微胶囊-水泥、相变材料-水泥试样的失重率依次增加,相变微胶囊-水泥式样的稳定性最好;复合成分所占质量分数相同时,相变材料-水泥试块强度略低于相变微胶囊-水泥试块;调温测试表明,在水泥中添加相变微胶囊颗粒或纯相变材料时均具有一定的调温储能功能,能明显减缓水泥基建材的温度在相变温度附近的波动;尽管直接吸附法制备的相变材料-水泥复合建材具有较好的调温性能,但其可循环性较差,伴有刺激性气味逸出,实用性较差。因此相变微胶囊-水泥复合较适宜作为新型建材推广使用。  相似文献   
9.
基于聚四氟乙烯(PTFE)微孔膜滤料扫描电镜(SEM)图像,建立PTFE微孔膜滤料微观结构模型,采用计算流体力学和离散单元法(CFD?DEM)耦合的方法对黏性颗粒在微孔膜滤料表面沉积特性进行模拟,引入液桥力模型,忽略范德华力的作用,统计计算域内颗粒的受力情况,分析了不同表面能条件下3~6 ?m粒径颗粒在微孔膜滤料表面的沉积特性,将模拟结果与黏附效率的经验公式进行对比。结果表明,黏附效率与经验值、颗粒受力与液桥力模型的相对误差均在6%以内,CFD?DEM耦合计算方法可用于模拟不同环境湿度条件下的颗粒沉积;过滤风速、粒径与黏性是影响沉积形态的重要因素,提高过滤风速及增大颗粒粒径与黏性,颗粒更易在滤料表面形成稳定的树突结构,黏附效率及含尘压降增加。环境相对湿度影响两物体间液桥体积,接触力影响颗粒沉积,当增加表面能与液桥体积时,接触力及液桥力均相应增加,根据受力平衡原理,环境相对湿度对颗粒沉积影响很大。  相似文献   
10.
烧结烟气氮氧化物(NOx)排放占钢铁行业NOx排放总量的50%以上,随着环保法规的日益严格,现有及新建烧结机只有装设烟气脱硝装置才能满足排放法规的NOx排放要求。而活性炭微孔丰富、比表面积大、吸附能力强,低温时即可同时脱除烟气中的SO2, NOx、粉尘及其他有害气体。因此,低温烧结烟气活性炭脱硝具有显著的特点及技术优势,但活性炭脱硝易受烟气中SO2和H2O的影响。本工作综述了低温烟气活性炭脱硝机理,主要包括物理吸附、化学吸附及选择性催化还原反应。烟气中氧气的存在起氧化作用,能有效提高活性炭的脱硝率;而SO2, H2O和NO存在竞争吸附作用会降低活性炭的脱硝性能,详述了SO2和H2O对活性炭脱硝的抑制作用及影响。阐述了活性炭负载过渡金属、稀土金属等金属氧化物化学改性对脱硝性能的促进作用及其脱硝机理,并对多元金属的负载进行了介绍;最后对烧结烟气活性炭低温脱硝技术进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号