首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   992篇
  免费   54篇
  国内免费   3篇
工业技术   1049篇
  2023年   9篇
  2022年   6篇
  2021年   22篇
  2020年   22篇
  2019年   14篇
  2018年   25篇
  2017年   21篇
  2016年   27篇
  2015年   26篇
  2014年   31篇
  2013年   63篇
  2012年   61篇
  2011年   53篇
  2010年   53篇
  2009年   53篇
  2008年   51篇
  2007年   53篇
  2006年   45篇
  2005年   33篇
  2004年   39篇
  2003年   34篇
  2002年   28篇
  2001年   36篇
  2000年   27篇
  1999年   27篇
  1998年   51篇
  1997年   35篇
  1996年   18篇
  1995年   21篇
  1994年   11篇
  1993年   10篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有1049条查询结果,搜索用时 390 毫秒
1.
The future of green electronics possessing great strength and toughness proves to be a promising area of research in this technologically advanced society. This work develops the first fully bendable and malleable toughened polylactic acid (PLA) green composite by incorporating a multifunctional polyhydroxybutyrate rubber copolymer filler that acts as an effective nucleating agent to accelerate PLA crystallization and performs as a dynamic plasticizer to generate massive polymer chain movement. The resultant biocomposite exhibits a 24‐fold and 15‐fold increment in both elongation and toughness, respectively, while retaining its elastic modulus at >3 GPa. Mechanism studies show the toughening effect is due to an amalgamation of massive shear yielding, crazing, and nanocavitation in the highly dense PLA matrix. Uniquely distinguished from the typical flexible polymer that stretches and recovers, this biocomposite is the first report of PLA that can be “bend, twist, turn, and fold” at room temperature and exhibit excellent mechanical robustness even after a 180° bend, attributes to the highly interconnected polymer network of innumerable nanocavitation complemented with an extensively unified fibrillar bridge. This unique trait certainly opens up a new horizon to future sustainable green electronics development.  相似文献   
2.
The structure of mold flux glasses in the system CaO-(Na,Li)2O-SiO2-CaF2 with unusually high modifier contents, stabilized by the addition of ∼4 mol% B2O3, is studied using 7Li, 23Na, 19F, 11B, and 29Si magic-angle-spinning (MAS), and 7Li{19F} and 23Na{19F} rotational echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. When taken together, the spectroscopic results indicate that the structure of these glasses consists primarily of dimeric [Si2O7]−6 units that are linked to the (Ca,Na,Li)-O coordination polyhedra, and are interspersed with chains of corner-shared BO3 units. The F atoms in the structure are exclusively bonded to Ca atoms, forming Ca(O,F)n coordination polyhedra. This structural scenario is shown to be consistent with the crystallization of cuspidine (3CaO·2SiO2·CaF2) from the parent melts on slow supercooling. The progressive addition of Li to a Na-containing base composition results in a corresponding increase in the undercooling required for the nucleation of cuspidine in the melt, which is attributed to the frustrated local structure caused by the mixing of alkali ions.  相似文献   
3.
Near-infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless-based phototherapies by converting deep-tissue-penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep-sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA-approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5-aminolevulinic acid (5-ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR-based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep-tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep-tissue light delivery.  相似文献   
4.
Diflunisal, an analgesic anti-inflammatory drug, was recrystallized from acetone solution using water and carbon dioxide as antisolvents. The crystallized diflunisal showed an acicular crystal habit with a very high aspect ratio. Growth retardation of diflunisal crystals was observed when ultrasound was added during the recrystallization and when habit-modifying agents were applied to the system. For example, an increase in sebacic acid concentration from 0.229 to 2.132 wt% lowered the aspect ratio of the crystal from 62 to 8.5, while an increase in Span 83 concentration from 1.712 to 4.415 wt% reduced the aspect ratio from 11 to 4.0. Differential scanning calorimetry and X-ray diffraction analysis revealed that the presence of ultrasound and habit-modifying agents may induce structural modifications as well as the growth retardation of diflunisal crystals.  相似文献   
5.
The main objective of our work is to increase transmittance in the mid infrared region by removing impurities through the pre-heating treatment of zinc sulfide (ZnS) produced by hydrothermal synthesis. The pre-heating treatment proceeded at 450 to 600 °C for 2 h under vacuum atmosphere (10?2 Torr). It was confirmed that the particle size increased as the pre-heating temperature increased. Additionally, all ZnS nano powders had a sphalerite (cubic) structure unaffected by pre-heating treatment. The ZnS nano powders were sintered by hot-press sintering method. As the pre-heating temperature increased, transmittance was improved due to the decreasing of porosity, increase of particle size, and the removal of impurities (carbon and sulfate). However, when the pre-heating treatment temperature was 600 °C, the transmittance slightly decreased due to the formation of a hexagonal phase. The ZnS ceramic with pre-heating treatment at 550 °C showed the highest transmittance (71.6%) and density (99.9%).  相似文献   
6.
The advent of high-throughput sequencing methods allowed researchers to fully characterize microbial community in environmental samples, which is crucial to better understand their health effects upon exposures. In our study, we investigated bacterial and fungal community in indoor and outdoor air of nine classrooms in three elementary schools in Seoul, Korea. The extracted bacterial 16S rRNA gene and fungal ITS regions were sequenced, and their taxa were identified. Quantitative polymerase chain reaction for total bacteria DNA was also performed. The bacterial community was richer in outdoor air than classroom air, whereas fungal diversity was similar indoors and outdoors. Bacteria such as Enhydrobacter, Micrococcus, and Staphylococcus that are generally found in human skin, mucous membrane, and intestine were found in great abundance. For fungi, Cladosporium, Clitocybe, and Daedaleopsis were the most abundant genera in classroom air and mostly related to outdoor plants. Bacterial community composition in classroom air was similar among all classrooms but differed from that in outdoor air. However, indoor and outdoor fungal community compositions were similar for the same school but different among schools. Our study indicated the main source of airborne bacteria in classrooms was likely human occupants; however, classroom airborne fungi most likely originated from outdoors.  相似文献   
7.
This paper shows the characteristics of pressure distribution caused by stack effect in high-rise residential buildings and proposes solutions for stack effect problems during the cold season. First, field measurements were conducted in two high-rise residential buildings in Korea to understand the characteristics of pressure difference and problems due to stack effect. Next, several high-rise residential buildings were simulated to confirm these characteristics and problems. From the field measurements and simulation results, the Thermal Draft Coefficients varied from 0.20 to 0.49. These values meant that most of the stack pressure difference in high-rise residential buildings acted on interior partitions rather than on exterior walls, so that serious problems due to large pressure differentials can occur on the inside of the building. The separation method which includes installing ‘air-lock doors’ between the elevator core area and residential area, is proposed to solve the pressure difference problems.  相似文献   
8.
Travel time prediction is one of the most important components in Intelligent Transportation Systems implementation. Various related techniques have been developed, but the efforts for improving the applicability of long‐term prediction in a real‐time manner have been lacking. Existing methods do not fully utilize the advantages of the state‐of‐the‐art cloud system and large amount of data due to computation issues. We propose a new prediction framework for real‐time travel time services in the cloud system. A distinctive feature is that the prediction is done with the entire data of a road section to stably and accurately produce the long‐term (at least 6‐hour prediction horizon) predicted value. Another distinctive feature is that the framework uses a hierarchical pattern matching called Multilevel k‐nearest neighbor (Mk‐NN) method which is compared with the conventional k‐NN method and Nearest Historical average method. The results show that the method can more accurately and robustly predict the long‐term travel time with shorter computation time.  相似文献   
9.
The marine operation of floating liquefied natural gas (FLNG) demands process compactness, flexibility, simplicity of operation, safety, and higher efficiency. The modified single mixed refrigerant (MSMR) process satisfies the FLNG process requirements and is accepted as a suitable technology for FLNG operation. The aim of this study was to develop a plant-wide control structure or strategy that can sustain the economic efficiency of the MSMR process. The NGL recovery and liquefaction units were integrated in the MSMR process to provide a compact plant structure with an efficient operation. Steady-state optimality analysis was intensively conducted in a rigorous dynamic simulation environment to determine the correct variable to sustain the economic efficiency of MSMR process. The results showed that the flow rate ratio of heavy and light mixed refrigerant (HK/LK ratio) is a promising self-optimizing controlled variable. Controlling this variable can sustain the MSMR optimality, even when the process is operated under off-design operating conditions or in the presence of disturbances. Based on the control structure tests, the control configuration with the HK/LK ratio loop showed excellent performance, maintaining the process stability against a range of disturbances. The proposed approach can also be applied to any cryogenic liquefaction technology for determining a possible optimizing controlled variable.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号