首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   951篇
  免费   34篇
  国内免费   2篇
工业技术   987篇
  2023年   5篇
  2021年   21篇
  2020年   19篇
  2019年   18篇
  2018年   12篇
  2017年   9篇
  2016年   19篇
  2015年   9篇
  2014年   17篇
  2013年   28篇
  2012年   36篇
  2011年   32篇
  2010年   23篇
  2009年   42篇
  2008年   40篇
  2007年   22篇
  2006年   20篇
  2005年   28篇
  2004年   20篇
  2003年   19篇
  2002年   20篇
  2001年   18篇
  2000年   15篇
  1999年   23篇
  1998年   126篇
  1997年   68篇
  1996年   39篇
  1995年   21篇
  1994年   23篇
  1993年   35篇
  1992年   13篇
  1991年   9篇
  1990年   10篇
  1989年   7篇
  1988年   13篇
  1987年   9篇
  1986年   11篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   13篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   4篇
  1977年   8篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
  1973年   2篇
排序方式: 共有987条查询结果,搜索用时 15 毫秒
1.
Directed evolution of Cp*RhIII-linked nitrobindin (NB), a biohybrid catalyst, was performed based on an in vitro screening approach. A key aspect of this effort was the establishment of a high-throughput screening (HTS) platform that involves an affinity purification step employing a starch-agarose resin for a maltose binding protein (MBP) tag. The HTS platform enables efficient preparation of the purified MBP-tagged biohybrid catalysts in a 96-well format and eliminates background influence of the host E. coli cells. Three rounds of directed evolution and screening of more than 4000 clones yielded a Cp*RhIII-linked NB(T98H/L100K/K127E) variant with a 4.9-fold enhanced activity for the cycloaddition of acetophenone oximes with alkynes. It is confirmed that this HTS platform for directed evolution provides an efficient strategy for generating highly active biohybrid catalysts incorporating a synthetic metal cofactor.  相似文献   
2.
The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate-dependent persistent photocurrent is observed, arising from the modulation of substrate-trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug-related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity.  相似文献   
3.
The integration of reinforcement learning (RL) and imitation learning (IL) is an important problem that has long been studied in the field of intelligent robotics. RL optimizes policies to maximize the cumulative reward, whereas IL attempts to extract general knowledge about the trajectories demonstrated by experts, i.e, demonstrators. Because each has its own drawbacks, many methods combining them and compensating for each set of drawbacks have been explored thus far. However, many of these methods are heuristic and do not have a solid theoretical basis. This paper presents a new theory for integrating RL and IL by extending the probabilistic graphical model (PGM) framework for RL, control as inference. We develop a new PGM for RL with multiple types of rewards, called probabilistic graphical model for Markov decision processes with multiple optimality emissions (pMDP-MO). Furthermore, we demonstrate that the integrated learning method of RL and IL can be formulated as a probabilistic inference of policies on pMDP-MO by considering the discriminator in generative adversarial imitation learning (GAIL) as an additional optimality emission. We adapt the GAIL and task-achievement reward to our proposed framework, achieving significantly better performance than policies trained with baseline methods.  相似文献   
4.
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.  相似文献   
5.
Poly(ε-caprolactone) (PCL) is one of the ecofriendly biodegradable polymers with excellent moldability but with rather low mechanical properties especially for the industrial and biomedical use. In this research, to overcome the problem, the two types of cellulose nanofibers, the cellulose acetate nanofibers (CA-NF) and the cellulose nanofibers (C-NF), were composited into PCL for the enhancement of the mechanical properties of PCL. CA-NF were prepared by electrospinning and converted into C-NF afterward by deacetylation. It was found that the Young's modulus of the CA-NF/PCL composite at the fiber concentration of 35 wt% significantly increased by ~3 times as compared with that of neat PCL, whereas C-NF/PCL of the same fiber concentration also increased by ~4.5 times. It was also found that the Young's moduli of CA-NF/PCL nearly reached the theoretical values calculated by the equation suggested by Tsai, but that the Young's moduli of C-NF/PCL could not reach the theoretical values. It indicates that CA-NF possessed better compatibility with PCL than C-NF, agreeing well with the fracture-surface analyses of the two composites by the scanning electron microscopy.  相似文献   
6.
The safe decommissioning as well as decontamination of the radioactive waste resulting from the nuclear accident in Fukushima Daiichi represents a huge task for the next decade. At present, research and development on long-term safe storage containers has become an urgent task with international cooperation in Japan. One challenge is the generation of hydrogen and oxygen in significant amounts by means of radiolysis inside the containers, as the nuclear waste contains a large portion of sea water. The generation of radiolysis gases may lead to a significant pressure build-up inside the containers and to the formation of flammable gases with the risk of ignition and the loss of integrity.In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context, a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification, and is characterized by having a self-healing function of precious metals (Pd, Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.  相似文献   
7.
This paper proposes a restart control method for position sensorless PMSM drive systems without a potential transformer for railway vehicle traction. This method can estimate the initial rotor speed and position under coasting conditions over the entire speed range. The method can also be used when the back‐EMF voltage is higher than the inverter DC link voltage. The proposed method is verified by experiments using a 200‐kW PMSM.  相似文献   
8.
Germanene, a 2D honeycomb germanium crystal, is grown at graphene/Ag(111) and hexagonal boron nitride (h-BN)/Ag(111) interfaces by segregating germanium atoms. A simple annealing process in N2 or H2/Ar at ambient pressure leads to the formation of germanene, indicating that an ultrahigh-vacuum condition is not necessary. The grown germanene is stable in air and uniform over the entire area covered with a van der Waals (vdW) material. As an important finding, it is necessary to use a vdW material as a cap layer for the present germanene growth method since the use of an Al2O3 cap layer results in no germanene formation. The present study also proves that Raman spectroscopy in air is a powerful tool for characterizing germanene at the interfaces, which is concluded by multiple analyses including first-principles density functional theory calculations. The direct growth of h-BN-capped germanene on Ag(111), which is demonstrated in the present study, is considered to be a promising technique for the fabrication of future germanene-based electronic devices.  相似文献   
9.
The status of nitrate (NO(3)(-)), nitrite (NO(2)(-)) and ammonium (NH(4)(+)) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate delta(15)N and delta(18)O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO(3)(-)-delta(15)N along with the NO(3)(-) reduction and clear delta(18)O/delta(15)N slopes of NO(3)(-) ( approximately 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO(3)(-) contamination via active denitrification and reduced nitrification. Our results showed that NO(3)(-) and NH(4)(+) contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.  相似文献   
10.
Nanoporous structure of the cell walls of polycarbonate foams   总被引:1,自引:0,他引:1  
Using CO2 to prepare microcellular polycarbonate foams resulted in a pore diameter of 45 nm and a pore density of 108 cm?2 on the walls of microscale cells, which created nano/micro foams with an open cell structure. In this study, the craze nucleation theory and the bubble nucleation theory of foaming were combined to explain the mechanism of the foaming-induced nanopores (microvoids) on the cell walls. In the foaming process, the strain energy was developed in the cell walls by bubble nucleation and growth. With large strain energy, a nanoporous structure of the cell walls was formed by initiation of crazing. Because the foaming temperature affected the strain energy in the cell wall, the temperature became a key factor of forming microcellular structure as well as the nanopores on the cell walls. Our experimental results showed that the diameter and density of the nanopores were determined by the competitive movements between chain stretching and relaxation. Furthermore, certain solvents, such as acetone, were found to increase the nanopore density of the walls by exploiting the plasticization effect of the solvent on the reduction of surface tension and viscosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号