首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   9篇
工业技术   49篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   7篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有49条查询结果,搜索用时 390 毫秒
1.
Environmental conditions and the interplay of cognitive and affective processes both exert influences on bidding behavior. This paper brings the above together, considering how the (external) auction environment determines the impact of (internal) cognitive and affective processes on bidding behavior, assessed in comparison to the optimal bid. Two aspects of the auction environment were considered, namely auction dynamics (low: first-price sealed-bid auction, high: Dutch auction) and value uncertainty (low, high). In a laboratory experiment, we assess bidders’ cognitive workload and emotional arousal through physiological measurements. We find that higher auction dynamics increase the impact of emotional arousal on bid deviations, but not that of cognitive workload. Higher value uncertainty, conversely, increases the impact of cognitive workload on bid deviations, but not that of emotional arousal. Taken together, the auction environment is a critical factor in understanding the nature of the underlying decision process and its impact on bids.  相似文献   
2.
Ferroelectrics are important technological materials with wide‐ranging applications in electronics, communication, health, and energy. While lead‐based ferroelectrics have remained the predominant mainstay of industry for decades, environmentally friendly lead‐free alternatives are limited due to relatively low Curie temperatures (T C) and/or high cost in many cases. Efforts have been made to enhance T C through strain engineering, often involving energy‐intensive and expensive fabrication of thin epitaxial films on lattice‐mismatched substrates. Here, a relatively simple and scalable sol–gel synthesis route to fabricate polycrystalline (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 nanowires within porous templates is presented, with an observed enhancement of T C up to ≈300 °C as compared to ≈90 °C in the bulk. By combining experiments and theoretical calculations, this effect is attributed to the volume reduction in the template‐grown nanowires that modifies the balance between different structural instabilities. The results offer a cost‐effective solution‐based approach for strain‐tuning in a promising lead‐free ferroelectric system, thus widening their current applicability.  相似文献   
3.
Sediment oxygen demand (SOD) and nutrient flux studies were conducted for a tropical reservoir in Singapore in order to determine the approximate SOD and nutrient release rates from the sediments. SOD values obtained from laboratory experiments ranged from 1.4 to 3.3?g?O2/m2-day. Similar results were also obtained by calculating SOD values from in situ DO measurements taken in the field. The nutrient flux study was performed in the laboratory at a constant temperature of 25°C in oxic and anoxic columns. Except for nitrate+nitrite, higher nutrient release rates were generally observed under anoxic conditions. The ammonium release rate was 0.06?g?O2/m2-day under oxic conditions and 0.117?g?O2/m2-day under anoxic conditions. The nitrate flux rate was 0.17?g?O2/m2-day under oxic conditions but was negligible under anoxic conditions. Orthophosphate flux results were negative throughout the oxic incubation implying that sediments acted as a sink. The release rate of orthophosphate was 0.007?6?g?O2/m2-day under anoxic conditions.  相似文献   
4.
5.
In this work, ceramic fillers zirconia and alumina powder were incorporated in the rigid polyurethane foams derived from modified castor oil and their impact on the mechanical, thermal, and fire performances of composite foams have been analyzed. It was observed that the addition of ceramic filler showed improved mechanical and thermal properties and best properties were shown by 6% zirconia with compressive strength of 6.61 MPa and flexural strength of 5.72 MPa. Zirconia also demonstrated an increase in T5% up to 260 °C. Cone calorimetry shows a decrease in peak of heat release from 118 to 84 kW m−2 and 94 kW m−2 by the incorporation of alumina and zirconia powder, respectively. Furthermore, total heat release (THR), smoke production rate (SPR), and total smoke release (TSR) were also found to decrease remarkably on the incorporation of ceramic fillers. So, these fillers have a great potential as an additive to incorporate good mechanical, thermal, and fire properties in bio-based rigid PU foams. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48250.  相似文献   
6.
Piezoelectric polymers, capable of converting mechanical vibrations into electrical energy, are attractive for use in vibrational energy harvesting due to their flexibility, robustness, ease, and low cost of fabrication. In particular, piezoelectric polymers nanostructures have been found to exhibit higher crystallinity, higher piezoelectric coefficients, and “self‐poling,” as compared to films or bulk. The research in this area has been mainly dominated by polyvinylidene fluoride and its copolymers, which while promising have a limited temperature range of operation due to their low Curie and/or melting temperatures. Here, the authors report the fabrication and properties of vertically aligned and “self‐poled” piezoelectric Nylon‐11 nanowires with a melting temperature of ≈200 °C, grown by a facile and scalable capillary wetting technique. It is shown that a simple nanogenerator comprising as‐grown Nylon‐11 nanowires, embedded in an anodized aluminium oxide (AAO) template, can produce an open‐circuit voltage of 1 V and short‐circuit current of 100 nA, when subjected to small‐amplitude, low‐frequency vibrations. Importantly, the resulting nanogenerator is shown to exhibit excellent fatigue performance and high temperature stability. The work thus offers the possibility of exploiting a previously unexplored low‐cost piezoelectric polymer for nanowire‐based energy harvesting, particularly at temperatures well above room temperature.  相似文献   
7.
Manganese (0.05-9 mol.%) doped CdS nanorods were synthesized via solvothermal route using ethylenediamine (En) and a mixture of En and water as the solvents. The diameters and the lengths of the doped CdS nanorods varied from 40-100 nm and 600-2500 nm, respectively, with change in the composition of the solvents. The broad photoluminescence (PL) emission from the undoped CdS nanorods centered at approximately 535 nm is found to be blue shifted to 516 nm with the incorporation of Mn in the CdS crystal structure. Also increase in the intensity of the PL was noticed in the Mn doped CdS nanorods for both the solvent systems. Maximum PL intensity was observed for 1 mol.% Mn in case of En system and for 0.5 mol.% Mn in case of En/water system, above which quenching occurred as a result of Mn-Mn clustering. EPR study revealed six-line hyperfine splitting for low Mn concentration in both solvent systems. Increase in the Mn concentration caused EPR signal broadening due to Mn-Mn clustering.  相似文献   
8.
Gap‐coupled designs of star‐shape microstrip antennas for dual band and wide band circular polarized response are proposed. An angular displacement between fed and parasitic patches yields the optimum separation between patch orthogonal resonant modes to yield circular polarized response. In dual band design, axial ratio bandwidth of 8% is obtained whereas wideband design gives axial ratio bandwidth of nearly 29%. Proposed configurations exhibit broadside pattern with peak gain of more than 7 dBi. Resonant length formulations for star shape patch and for their dual and wide band designs are presented. They provide guidelines for redesigning similar antenna at different frequency.  相似文献   
9.
Wireless Personal Communications - Active queue management schemes are used to reduce the number of dropped packets at the routers. Random early detection uses dropping probability which is...  相似文献   
10.
Bio-composite scaffolds were fabricated by impregnating 10, 20, 30, 40 and 50% ZrO2 content with the β-TCP matrix to heal load bearing large size bone defects. The composite scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and mechanical testing. The in vitro degradation of scaffolds was calculated by immersing the samples in phosphate buffer saline for a period of 21 days. Biocompatibility was evaluated by XTT assay using human Osteosarcoma cell line (MG-63). Results include scaffold surface morphology, overall porosity, phase transformation, bonding, compressive strength, biodegradability and cytotoxicity with an increase in ZrO2 percentages. The conclusions proved that β-TCP scaffold with 30% ZrO2 content exhibits the best-required properties for the application in the field of bone tissue regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号